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ABSTRACT 

Background: Neuritin-1 (NRN1) is a neurotrophic factor involved in synaptic plasticity that has 

been associated with schizophrenia, depressive disorders and cognitive performance. 

Considering that the study of genotype-phenotype relationship in healthy individuals is a 

useful framework to investigate the etiology of brain dysfunctions that underlie mental 

disorders, we aimed to study in a general population sample, whether NRN1 gene variability is 

contributing to: i) the psychopathological profile, ii) the executive function performance. We 

also aimed to test whether these associations are modulated by BDNF gene. 

Methods: The sample comprised 410 subjects from the general population who filled in the 

self-reported Brief Symptom Inventory (BSI) and were assessed for cognitive executive 

performance using 3 neuropsychological tests including Verbal Fluency, Wisconsin Card Sorting 

Test (WCST) and Letter-Number subscale (WAIS-III).  Genotyping analyses included 9 SNPs in 

NRN1 and one in BDNF (Val66Met). 

Results: i) GG homozygotes of rs1475157-NRN1 showed higher scores on BSI depressive 

dimension and total scores (=0.62 p=0.00036, =2.51 p=0.00033, respectively). ii) A linear 

trend was detected between GG genotype of rs1475157 and a worse cognitive performance 

in: Phonemic Fluency: =-1.66 p=0.086; WCST total-correct response: =-4.5 p=0.029. iii) 

Interaction between rs1475157-NRN1 and Val66Met-BDNF was found to modulate depressive 

symptoms (p=0.001) and phonemic fluency (p=0.033). 

Discussion: Our results suggest that NRN1 variability has a role in the presence of depressive 

symptoms and in modulating executive function performance. These effects seem to be 

modulated by BDNF, which supports a gene-gene interaction effect between both 

neurotrophic factors in a general population sample. 
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INTRODUCTION 

Brain development is a well-organized dynamic process which efficiency is essential for the 

correct functioning of the whole brain. Both, genetic and environmental inputs are involved in 

a normal brain development, and disruption of either can fundamentally alter neural 

outcomes. Accordingly, deviances in neurodevelopmental processes are thought to contribute 

to the etiology of many psychiatric disorders that manifest throughout the entire lifespan. 

Increasing evidence suggest that Neurotrophic factors (also called Neurotrophins, NTFs) are 

important regulators of neural survival, growth, development, function, and plasticity (Huang 

and Reichardt 2001). In this sense, an inadequate neurotrophic support in the brain could lead 

to an inappropriate cortical circuitry and synaptic transmission in the developing brain, which 

could translate into a reduced brain’s ability to make adaptive changes (Angelucci et al. 2005). 

This lack of plasticity, in turn, could be underlying the cognitive functioning variability in 

healthy individuals and the brain alterations related to the development of mental disorders.  

 

Variability of brain plasticity, from health to disease status, is thought to result from complex 

interactions between genetic factors following a polygenic inheritance pattern in which 

multiple genes with small effects are involved. In addition, recent molecular genetic studies 

indicate empirical evidences of the existence of some shared genetic roots between several 

psychiatric disorders such as Schizophrenia (SZ) or Major Depressive Disorder (MDD) (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013); which adds to the 

consideration of common pathophysiological mechanisms among these disorders. This view is 

reinforced by the fact that these disorders show impairments across similar domains including 

attention, memory, cognitive control and Executive Function (EF) (Chamberlain and Sahakian 

2004 ; Blarch and Sheffield 2014), even though quantitative differences may exist. In 

particular, EF represents cognitive processes, including the ability to sustain and shift 

attention, inhibit pre-potent responses, hold information in working memory, and plan 

responses (Pennington and Ozonoff 1996), and there is strong argument that EF is particularly 

compromised in both SZ and MDD (Elliott 2003).  

 

Due to the important role that neurotrophins play along the neurodevelopment NTFs such as 

Neuritin-1 (NRN1) or Brain-Derived Neurotrophic Factor (BDNF) are considered as putative 

candidate genes for psychiatric diseases. Neuritin-1 gene, also called candidate plasticity gene 

15 (CPG15), encodes a small highly conserved protein attached to the extracellular neuronal 

membrane by a glycosylphosphatidylinositol link and operates as an intercellular signal 



between neighbouring neurons (Naeve et al. 1997). As reviewed by Zhou and Zhou (2014), 

NRN1 is involved in neurodevelopment and synaptic plasticity, and also in promoting 

processes such as dendritic and axonal growth, neurite outgrowth, neuronal migration, and 

the maturation of synapses. Furthermore, the expression of NRN1 gene has been reported to 

be regulated by BDNF (Naeve et al. 1997), which promotes the differentiation and growth of 

developing neurons in central and peripheral nervous systems (Buckley et al. 2007).  

 

NRN1 gene has already been involved in the risk for mental disorders and associated 

phenotypes. On the one hand, previous studies have reported the effect of NRN1 polymorphic 

variation on the risk for developing SZ and on general cognitive performance (Chandler et al. 

2010; Fatjó-Vilas et al. 2016). On the other hand, from animal model based studies, there is 

evidence of NRN1 relationship with depressive symptoms. First, Neuritin knockdown results in 

depressive behaviors (Son et al. 2012). Second, electroconvulsive therapy, one of the most 

robust gene inducer among all antidepressant treatments (Segi-Nishida 2011), induces changes 

in both NRN1 and BDNF expression  (Dyrvig M et al 2014; Park HG et al 2014). Third, fluoxetine 

increases the level of NRN1 and BDNF specifically in the prefrontal cortex, hippocampus and 

dentate gyrus (Alme et al. 2007), which suggest that antidepressant treatment promotes gene 

expression responses linked to NTFs signaling and synaptic plasticity. 

 

Psychiatric research has been mainly focused on subjects affected by the severe form of the 

disorders; however, studying subjects presenting attenuated symptoms, without reaching the 

clinical threshold, may also shed light on the etiology of mental disorders. In this sense, for 

example, epidemiological studies have reported that depressive symptoms are frequent in the 

general population, varying between 2.1% and 7.6% (Regier et al. 1988; Blazer et al. 1994). Or, 

a recent meta-analysis reported that the median lifetime prevalence of Psychotic experiences 

(PE) was 7.2% (Linscott RJ 2013). These data suggest that there is a continuous distribution of 

symptoms in the general population where individuals differ in the frequency or intensity of 

the experience of these symptoms, supporting the notion that both clinical and subclinical 

symptoms share some of the risk (Verdoux and van Os, 2002). Thus, the study of the factors 

and mechanisms underlying psychiatric symptoms in non-clinical samples contributes to the 

understanding of the severe expression of these phenotypes and present the advantage of 

obtaining results not biased by treatment or the illness itself. 

 

Considering all mentioned above, the understanding of the role of NRN1 gene may contribute 

to explain the neuroplasticity mechanisms underlying the qualitative and intensity pattern of 



different psychopathological profiles. Accordingly, our study seeks to investigate in a general 

population sample: i) whether NRN1 gene variability contributes to the psychopathological 

profile, with special interest in the dimensions previously related to NRN1 gene (i.e. depressive 

and psychotic), ii) the implication of NRN1 gene in the executive function performance, iii) 

whether the association between either NRN1-psychopathological profile or NRN1-cognitive 

performance is moderated by BDNF gene. 

 

  



METHODS 

Sample description 

Adult healthy Spanish individuals from the general population were recruited from the campus 

of Jaume I University in Castelló (Spain).  

Exclusion criteria were the presence of any major medical illness affecting brain function, 

current substance abuse (alcohol or illicit drugs), neurological conditions, history of head injury 

and personal history of psychiatric medical treatment. These areas were screened by means of 

a short interview designed ad hoc for this study. In addition, participants were required to 

describe themselves as being of Spanish (Caucasian) ancestry to reduce the possibility of 

confounding by population stratification (Freedman et al. 2004).  

Ethical approval was obtained from local research ethics committees. All participants provided 

written informed consent before inclusion in the study. 

 

Measurements 

All interviews were carried out by trained psychologists. 

 Brief Symptom Inventory 

All participants filled in the Brief Symptom Inventory (BSI), which is a self-administered scale 

that provides information for a wide range of symptoms of psychological distress and mental 

disorders (Derogatis and Melisaratos 1983)(Derogatis and Melisaratos 1983)(Derogatis and 

Melisaratos 1983)(Derogatis and Melisaratos 1983)(Derogatis and Melisaratos 1983)(Derogatis 

and Melisaratos 1983) in the last 30 days. We used the Spanish validated version of the BSI, 

which includes 46 items grouped into six dimensions: depression, anxiety, paranoid ideation, 

obsession-compulsion, somatization and hostility (Ruipérez et al. 2001). The questionnaire was 

conceived to measure psychiatric symptoms from a dimensional perspective and designed to 

be used both in clinical and non-clinical population. Each item of the BSI is rated on a 5-point 

scale of distress ranging from ‘‘not at all’’ (1) to ‘‘extremely’’ (5). As an example, Paranoid 

ideation dimension refers to being susceptible, full of mistrust or with fear of loss of autonomy, 

among others, and Depression Dimension includes signs and symptoms of the clinical 

syndrome of depression such as dysphoric affect, loss of interest in life activities, or loss of vital 

energy. 

A continuous weighted score of each symptom subscale was used in the analyses (e.g. sum of 

scores on the depression items divided by number of items filled in). 

  



 

 Cognitive assessment 

Cognitive executive function was assessed using a battery of 3 standardized 

neuropsychological tests, which have been shown to be sensitive to frontal/prefrontal 

dysfunction (Lezak et al. 2004): Verbal Fluency (Spreen, O., & Benton 1977), Wisconsin Card 

Sorting Test (WCST, Heaton 1981))  and Letter-Number subscale of Wechsler Adult Intelligence 

Scale (WAIS-III, Wechsler 1997). From these tests, 5 outcome variables were selected: 1) 

number of animals named in one minute (Semantic Fluency), 2) number of words starting with 

letter P named in one minute (Phonemic Fluency), 3) Number of perseverative errors (WCST), 

4) Number of correct responses (WCST), 5) total score on Letter-Number subscale (WAIS-III).  

Additionally, the Intellectual quotient (IQ) was assessed using the Block Design and Vocabulary 

or Information subtests of the WAIS-III, in accordance with the method suggested by Sattler 

(2001). 

 

Molecular Analysis 

Genomic DNA was extracted from buccal mucosa using standard methods: the Real Extraction 

DNA Kit (Durviz S.L.U., Valencia, Spain) or the Buccal Amp DNA Extraction Kit (Epicentre® 

Biotechnologies, Madison, WI).  

Coverage of NRN1 genomic sequence and 10kb upstream and downstream was achieved by 

including 9 tag SNPs. The optimal set of SNPs that contained maximum information about 

surrounding variants was selected by using SYSNPs (http://www.sysnps.org/) with a minor 

allele frequency (MAF) >5%, using pairwise option tagger (threshold of r2=0.8). The SNPs 

included in Chandler et al (2010) study were also considered. The functional SNP rs6265 of 

the BDNF gene was also genotyped. For this polymorphism, the A allele encodes for the 

aminoacid methionine (Met) and the G allele encodes for valine (Val). In subsequent analyses, 

individuals with Val/Met or Met/Met genotypes were combined (Met carriers) and compared 

with individuals with the Val/ Val genotype.  See Table 2 for SNPs details. 

 

Genotyping was performed using a fluorescence-based allelic discrimination procedure 

(Applied Biosystems Taqman 5’-exonuclease assays). Standard conditions were used. The 

genotyping call rate for all SNPs was higher than 94.2%. After randomly re-genotyping the 10% 

of the sample, the 100% of genotyping results were confirmed.  

All SNPs were in Hardy-Weinberg equilibrium.  

  



Statistical analysis 

Genotypic association analyses were undertaken between NRN1 SNPs and each BSI dimension 

using linear regression function in PLINK (Purcell et al. 2007), including age and gender as 

covariates. We also explored the data under the assumptions of dominant (major 

homozygotes versus heterozygotes plus minor homozygotes) or recessive (major homozygotes 

plus heterozygotes versus minor homozygotes) models of inheritance. These analyses were 

corrected for multiple testing by using PLINK’s max (T) permutation procedure with 1000 

iterations. 

 

Based on the significant results of genotypic association analysis, the association between the 

NRN1 rs14751157 (GG vs A carriers) and cognitive performance was analyzed by means of 

linear regression (SPSS 21.0; IBM, New York, U.S.A). Years of education and gender were 

included as covariates. The relationship between cognitive performance and BSI 

depressive/total scores was also tested using linear regression, adjusted by years of education 

and gender. Moreover, interaction between NRN1 rs1475157 (GG vs A carriers) and the BDNF 

rs6265 (Val/Val vs Met carriers) polymorphisms on depressive dimension and phonemic 

fluency/WCST correct responses was explored by means of two-way interaction effects with 

linear regression model. In each of these linear regression analyses Bonferroni correction was 

applied. 

 

Statistical power estimations were conducted by using G*Power 3.1.7 (Faul et al., 2009).  In 

our sample we had a sufficient power (0.80) to detect a range of effect size (d) of 0.32-0.70 

between the two main genotypes of NRN1 SNPS. Specifically, for rs1475157 (GG vs A carriers) 

the effect size was d=0.66, which, as an example, corresponds to 0.71 points on BSI depressive 

dimension scores (Cohen 1988).  

 

 

 

 

 

 

 

 



RESULTS 

· Sample description 

The sample was composed of 410 subjects from the general population: 44.2% of males, mean 

age at interview (sd)= 22.09 (3.4).  At the assessment, 77% of the participants were university 

students. In terms of education, 2.51% of individuals had completed elementary school, 

92.46% had completed high school and 5.03% had received a university education (mean years 

of education(sd)= 13.5 (1.7), mean IQ (sd)=99.16 (11.64)).  

 

In relation to the psychopathological status measured by the BSI, in the current sample 

between 15-20% of the individuals reported that “extremely” experienced at least one item of 

the scale (Table 1).  

 

With regard to executive function evaluation, mean(sd) scores of the tests were as follows: i) 

Phonemic fluency=16.64(4.1); Semantic fluency=22.28(5.1); Perseverative Errors 

WCST=8.44(8.01); Total correct response=69.98(8.88); Letters-Numbers=9.32(2.52). 

 

Table 2 shows the genotype distribution for NRN1 and BDNF polymorphisms in the sample. In 

this sense, the observed genotypic frequencies were similar to those described by 1000 

Genomes Project.  

 

 

Table 1.  Data on BSI dimensions and total scores (n=410) 

BSI dimensions Mean score 
(sd)* 

% individuals that reported that “extremely” 
experienced at least one item of the subscale 

BSI _depression 1.83 (0.74) 22.46 

BSI_anxiety 1.28 (0.39) 16.60 

BSI_somatization 1.60 (0.56) 21.49 

BSI_hostility 1.38 (0.49) 17.63 

BSI_obsession 1.73 (0.60) 22.22 

BSI_paranoia 1.72 (0.61) 22.46 

BSI_total 9.57 (2.72) 22.46 

(*) weighted scores 



 

Table 2. Information on NRN1 and BDNF SNPs included in this study. The table includes the dbSNP number, the genomic and gene 
position and the alleles of each SNP (UCSC Genome Browser on Human Mar. 2006 Assembly (hg18), http://genome.ucsc.edu/cgi-
bin/hgTracks). Observed genotypic and allelic frequencies are also given.  

SNP Chr Chr 
Position 

Gene position Allelesa MAF1000G
b MAFsample

c Genotype Frequency (%) 

NRN1 gene        

rs2208870 6 5992490 Intergenic A/G 0.332 0.316 GG (9.10%) GA (46.19%) AA (44.71%) 

rs12333117 6 5994992 Downstream C/T 0.347 0.423 CC (32.92%) CT (49.26%) TT (17.82%) 

rs582186 6 6001381 Intronic A/G 0.450 0.371 GG (38.54%) GA (48.87%) AA (12.59%) 

rs645649 6 6004959 Intronic C/G 0.449 0.324 GG (45.25%) GC (44.75%) CC (10%) 

rs582262 6 6007991 Upstream C/G 0.480 0.230 GG (60.36%) GC (33.76%) CC (5.88%) 

rs10484320 6 6010437 Upstream C/T 0.152 0.219 CC (59.61%) CT (36.15%) TT (4.24%) 

rs4960155 6 6010539 Upstream C/T 0.425 0.493 CC (26.1%) CT (46.04%) TT (27.86%) 

rs9405890 6 6012721 Intergenic T/C 0.376 0.320 TT (47%) TC (41.30%) CC (11.7%) 

rs1475157 6 6017169 Intergenic A/G 0.164 0.181 AA (68.38%) AG (27%) GG (4.62%) 

BDNF gene         

rs6265 
(Val66Met) 

11 27598369 Exonic A/G 0.201 0.237 Val/Val 
(59.10%) 

Val/Met (34.22%) Met/Met (6.68) 

aThe less frequent allele (minor allele) is placed second. 
bMAF refers to Minor Allele Frequency observed in the 1000 Genomes project (Abecasis et al. 2012). 
cMAF observed in the current sample 

 

http://genome.ucsc.edu/cgi-bin/hgTracks
http://genome.ucsc.edu/cgi-bin/hgTracks


· Is the variability of NRN1 gene associated with BSI psychopathological dimensions? 

Among the six BSI psychopathological dimensions, the genetic variability of NRN1 gene was 

related to depressive dimension and total BSI scores. In particular, the SNP rs1475157 was 

significantly associated with depressive symptoms (p=0.001556-genotypic model). Specifically, 

GG homozygotes showed higher scores on BSI depressive dimension than A allele carriers: 2.4 

(1.08) and 1.8 (0.71), respectively (=0.62 p=0.00036-recessive test). In addition, the total 

score on the BSI was also significantly higher in those individuals carrying two copies of the G 

allele: 10.84 (3.56) and 9.51 (2.68), respectively (=2.51 p=0.00033 – recessive model). These 

associations remained significant after permutation analysis.  

 

· Is the variability of NRN1 gene (SNP rs1475157) associated with cognitive performance?  

The same genotype within rs1475157 polymorphism was also associated with cognitive 

performance. A linear trend was detected between the GG genotype and a worse cognitive 

performance in the following tests: a) Phonemic Fluency: GG 15.05(3.73) vs A carriers 

16.72(4.11), =-1.66 p=0.086; b) WCST total correct response: GG 65.52(5.45) vs A carriers 

70.20(9.04), =-4.5 p=0.029. However, these results did not remain significant when multiple 

testing corrections were applied.  

 

· Is there a relationship between depressive dimension and cognitive performance? 

We explored the relationship between those cognitive test observed to have a nominal 

association with NRN1 and BSI depressive dimension and total scores. A trend correlation was 

found between BSI depression dimension scores and Phonemic fluency (=-0.02 p=0.059). 

Also, higher BSI total scores were negatively correlated with lower phonemic fluency (=-0.09 

p=0.007). No relationship was found between WCST total correct response and BSI depressive 

dimension or total scores. When correcting for multiple testing, only the relationship between 

phonemic fluency and BSI total scores remained significant.  

 

·Is the relationship between NRN1 and depressive symptoms/cognitive performance 

modulated by the BDNF? 

We finally tested the interaction between rs1475157 NRN1 and the polymorphism Val66Met 

of BDNF gene on: i) depressive symptoms, ii) phonemic fluency and total correct responses 

WCST. First, a significant two-way interaction was found on the presence of depressive 

symptoms (= 1.22 p=0.001) (Table 3, Figure 1A). In other words, carriers of both the GG 

genotype of rs1475157 NRN1 and the BDNF Met allele presented significantly more depressive 



symptoms. Second, we found a significant two-way interaction on phonemic fluency (=-4.462 

p=0.033) (Table 3, Figure 1B); meaning that carriers of both the GG genotype of rs1475157-

NRN1 and Met allele of the rs6265-BDNF presented significantly worse phonemic fluency 

performance. Third, no interaction effect was detected between on WCST scores (correct 

responses). After multiple testing, only the interaction between NRN1xBDNF on depressive 

symptoms was significant. 

 

 

 
 
 

 

Figure 1. A) Graphical representation of the interaction effect between rs1475157 of NRN1 (GG vs A carriers) and 

rs6265 of BDNF (Val/Val vs Met carriers) on the presence of depressive symptoms, corrected by age and sex.  

BSI scores
~x (sd): GG + Val/Val: 2.02(0.9); GG + Met carriers: 3.25(1.11); Met carriers + A carriers: 1.82(0.69); 

Val/val + A carriers: 1.79(0.75). B) Graphical representation of the interaction effect between rs1475157 of NRN1 
and rs6265 of BDNF on Phonemic Fluency scores, corrected by years of education and sex.  

Phonemic Fluency
~x (sd): GG + Val/Val: 13.27(0.9); GG + Met carriers: 8.36(1.11); Met carriers + A carriers: 

14.17(0.69); Val/Val + A carriers: 14.62(0.75).  
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Table 3. Linear regression models testing the main effects and interaction of NRN1 (rs1475157) 
and BDNF (rs6265) on the presence of depressive symptoms (A) and phonemic fluency (B).   

Outcome: 

A) BSI Depressive Dimension 
 

 
 SE P-value 

i) Main effects:    

NRN1 (rs1475157)(GG vs A carriers) 0.62 0.18 0.001 

BDNF (rs6265) (Val/Val vs Met carriers) 0.09 0.80 0.246 

Sex 0.09 0.07 0.248 

Age -0.008 0.01 0.439 

ii) Interaction:  
1.22 

 
0.38 

 
0.001 NRN1* BDNF 

B) Phonemic Fluency 

 
 SE P-value 

i) Main effects:    

NRN1 (rs1475157)(GG vs A carriers) -1.349 0.992 0.175 

BDNF (rs6265) (Val/Val vs Met carriers) -0.451 0.426 0.290 

Sex -0.211 0.423 0.618 

Education years 0.119 0.058 0.042 

ii) Interaction:  
-4.462 

 
2.089 

 
0.033 NRN1* BDNF 

A)  i) Adj-R
2
 =0.03 ii) Adj-R

2
 =0.06 

B)  i) Adj-R
2
 =0.009 ii) Adj-R

2
 =0.018 

, regression coefficient; SE, standard error 



Discussion:  

Our study aimed to explore the role of Neuritin-1 gene on the expression of 

psychopathological dimensions and on the performance variability on executive function tasks 

in healthy subjects from the general population. Moreover, we were also interested in 

investigating whether the role of NRN1 on these clinical and cognitive phenotypes is 

modulated by the BDNF gene (Figure 2).  

 

First, our results suggest that NRN1 gene variability is associated with depressive sub-clinical 

symptomatology. To our knowledge, this is the first work describing a genetic association of 

NRN1 gene with depressive symptoms in a general population sample. Specifically, we have 

identified that the polymorphism upstream of rs1475157-NRN1 shows a significant effect on 

the appearance of depressive symptoms, with individuals carrying the genotype GG showing 

higher scores compared to A allele carriers. These results are in line with the findings from 

animal models in which NRN1 is shown as an interesting new player in depression. In this 

regard, knockdown of NRN1 mice models in the hippocampus produced depressive-like 

behaviours (Son et al. 2012), whereas electroconvulsive therapy and antidepressant treatment 

produced changes in Neuritin levels  (Alme et al. 2007; Dyrvig et al. 2014).  In all, these results 

suggest the role of NRN1 in modulating depressive symptomatology and highlights this gene as 

a potentially interesting new target for antidepressant treatment. 

Secondly, the same genotype within rs1475157 polymorphism showed a trend with a worse 

performance in phonemic fluency and WCST total correct responses. Although, these results 

did not remain significant after multiple testing correction, they are suggestive of an 

involvement of NRN1 in executive function in the general population. The two previous studies 

on NRN1 and cognition have detected such effect in SZ patients but not in healthy subjects 

(Chandler et al. 2010; Fatjó-Vilas et al. 2016); however, they analysed general intelligence and 

not executive function. In particular, Chandler et al found that the G allele of rs1475157 was 

associated with poorer performance in the abstraction component and IQ decline specifically 

in SZ patients; while  the opposite allele of rs1475157 (A) located within an haplotype was 

associated with better IQ scores and later age at onset for SZ  (Fatjó-Vilas et al. 2016).  

Although, our findings are done in the context of a healthy sample, it is attractive to speculate 

about the interest of studying genetic variability in non-clinical populations in which there is a 

continuum distribution of the pathophysiological dimensions (Verdoux and Van Os 2002). The 

fact that NRN1 has a role in the presence of depressive symptoms and with the neurocognitive 

performance can also be supported considering that it is widely accepted that depression is 



associated with a number of neurocognitive deficits (Austin et al. 2001)(Christensen et al. 

1997). In our study, we have also observed that there is a negatively relationship between BSI 

depression dimension scores and Phonemic Fluency performance. This is in line with the 

evidences reporting that patients with depression produce fewer words on  fluency tasks 

(Fossati et al. 2003). From an intermediate phenotypes framework, it is of mention that these 

cognitive deficits have also been found in healthy first degree relatives of patients with either 

MDD or SZ (Christensen et al. 2006; Barrantes-Vidal N, 2007). Thus, our findings could support 

the importance of studying executive functions performance as a vulnerability marker for 

depression in the general population. 

 

Despite the connection between the NRN1 rs1475157 and the risk for mental disorders is still  

unclear, the consideration of the putative effects of the analysed polymorphic sites on  gene  

expression regulatory mechanisms represents a valuable resource to provide additional 

meaning and importance to our association data. Although rs1475157 is not a functional SNP, 

recent data has revealed the importance of intronic and intergenic variants as regulatory 

elements of gene expression (Dunham et al. 2012). The impact of non-coding variants of the 

NRN1 SNPs can be examined using HaploReg (Ward and Kellis 2012), which is a tool that uses 

LD information from the 1000 Genomes Project to provide data on the predicted chromatin 

state of the queried SNPs, their sequence conservation mammals and their effect on 

regulatory motifs. Interestingly, rs1475157 is predicted to alter various regulatory motifs such 

as HP1-site-factor which is a telomere-capping protein whose function is necessary for the 

chromosome stability (Fanti et al. 1998) and it is involved in gene silencing (Jones et al. 2000).  

Moreover, there is also evidence that this SNP is a binding site for the circadian rhythm-related 

transcription suppressor E4BP4 (Mitsui et al 2001). This transcription factor is involved in the 

circadian expression of Per2, which is one of the essential components of mammalian 

circadian clocks (Ohno et al. 2007). Interestingly, depressive disorders have been related with a 

deregulation of the circadian biological clock that controls the neuronal physiological 

processes (Landgraf et al. 2014), which gives indirect support to our findings. 

 

Third, our data shows for the first time that the effect of NRN1-rs1475157 in either the 

appearance of depressive symptoms or cognitive function performance is not independent of 

BDNF polymorphism. In other words, rs1475157-NRN1 GG genotype that are carriers of the 

rs6265-BDNF Met allele present more depressive symptoms than the individuals carrying other 

combinations. Moreover, the same genotype combination (GG genotype of NRN1-rs1475157 



and Met allele of rs6265-BDNF) was associated with poorer cognitive performance in terms of 

phonemic fluency scores. Then, to understand this synergistic effect, beyond the above-

described effects of NRN1, the BDNF role has to be considered. Met-allele carriers have a 

significantly lower activity-dependent expression of BDNF (Egan et al. 2003) and it has been 

also related with a plausible increased risk for developing depression (Buchmann et al. 2013). 

In addition, the Met allele has been also linked with impaired episodic memory, working 

memory, and reduced hippocampal volume and function in healthy populations (Egan et al., 

2003; Dempster et al., 2005; Tan et al., 2005)(Frodl et al. 2007), which all supports our 

findings.    

Despite the fact that evidence of a statistical interaction does not necessarily map directly onto 

biological interaction, this finding is based on a previously described effects of BDNF on NRN1 

regulation (Naeve et al. 1997). This interaction is also supported if we considered evidences 

about that there is a positive correlation expression between both genes (BrainCloud: 

http://braincloud.jhmi.edu/) (Colantuoni et al. 2011). Moreover, these gene-gene interaction 

results are in line with another study reporting the interplay between NRN1 and BDNF on the 

risk for developing Schizophrenia Spectrum Disorders (SSD) (Fatjó-Vilas et al 2016). 

 

Since both neurotrophins are critically essential for a correct brain function plasticity, although 

the molecular mechanisms underlying this interaction is unknown, we could modestly 

hypothesize that both genes contribute synergistically to the modification of the correct 

synaptic plasticity which could have an impact in the underlying mechanisms of either the 

presence of depressive symptoms or cognitive performance alterations.  

 

Our study should be interpreted in the context of some limitations. First, the moderate sample 

size to detect genetic associations should be mentioned, replication in larger samples from 

general population with higher statistical power are needed to confirm these findings. Second, 

the characteristics of the sample need to be considered when generalizing the present 

findings. Although the sample is drawn from the general population, representativeness is also 

limited by these characteristics. Third, when multiple testing is considered, only the 

association between NRN1 and BSI scores and the interaction between NRN1xBDNF on 

depressive symptoms remain significant. However, the Bonferroni correction is often 

considered to be overly strict and conservative (Feise 2002; Gelman et al. 2012). Fourth, the 

evaluation of the psychopathological outcome could have benefited by using some interview-

based complementary instruments. Fifth, other current factors not controlled in the present 

study, social adjustment or quality of life may influence the mood state of participants at the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195417/#R17
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195417/#R17
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195417/#R15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195417/#R61


time of assessment for depressive symptoms dimension. Sixth, it should be mentioned that as 

the genotype combination includes the minor alleles of both NRN1-rs1475157 and rs6265-

BDNF, the interpretation of our results is hampered by the frequency of this combination in 

the population. Seventh, the variation of R2 from the non-interaction models to the interaction 

was small but significant; thus this effect seems not of dismissible interest, since is it known 

that the power to detect interactions is typically lower than the power to detect main effects 

(McClelland and Judd 1993). In summary, the interpretation of these results should be done 

with caution and further studies are required to determine the biological mechanisms 

underlying not only the role of NRN1 but also the detected gene interaction effect between 

NRN1 and BDNF in a non-clinical sample. 

 

To conclude, our results contribute to the understanding of the genetic heterogeneity present 

in the general population, suggesting that NRN1 has a role in the appearance of depressive 

symptoms and cognitive performance in a non-clinical sample. Moreover, its effects seem to 

be modulated by BDNF gene, supporting a gene-gene interaction between both neurotrophic 

factors. Although new studies are needed to better understand the role of NRN1 gene, our 

findings add support to the pleiotropic effect of NRN1, a neurotrophic factor with multiple 

roles in neurodevelopment and synaptic plasticity. 
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Figures 

 

Figure 2. Graphical representation of the different steps analyses and findings of the study. 1) To explored 

whether the variability of NRN1 gene is associated with BSI psychopathological dimensions, 2)  To explored whether 

the variability of NRN1 gene is associated with of executive function performance, 3)  To explore  if there was a 

relationship between depressive dimension and cognitive performance, 4) To analyzed whether the association 

between either NRN1-psychopathological profile or NRN1-cognitive performance is moderated by BDNF gene. 


