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Abstract 34 

The popularity of new psychoactive substances (NPS) has grown in recent years, with 35 

certain NPS commonly and preferentially consumed even following the introduction of 36 

preventative legislation. With the objective to improve the knowledge on the use of 37 

NPS, a rapid and very sensitive method was developed for the determination of ten 38 

priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, 39 

butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-40 

NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by 41 

off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled 42 

internal standards were used to correct for matrix effects and potential SPE losses. 43 

Following chromatographic separation on a C18 column within 6 minutes, the 44 

compounds were measured by tandem mass spectrometry in positive ionisation mode. 45 

The method was optimised and validated for all compounds. Limits of quantification 46 

were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation 47 

into the stability of these compounds in influent wastewater was also performed, 48 

showing that, following acidification at pH 2, all compounds were relatively stable for 49 

up to 7 days. The method was then applied to influent wastewater samples from eight 50 

European countries, in which mephedrone, methylone and MDPV were detected.  This 51 

work reveals that although NPS use is not as extensive as for classic illicit drugs, the 52 

application of a highly sensitive analytical procedure makes their detection in 53 

wastewater possible. The developed analytical methodology forms the basis of a 54 

subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-55 

based epidemiology).  56 
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Introduction 59 

New psychoactive substances (NPS) are emerging narcotic or psychotropic drugs that 60 

are not controlled by legislation, but which may pose a public health threat. It must be 61 

noted that here, the term ‘new’ does not necessarily refer to new inventions but to 62 

substances that have recently become available (UNODC, 2014). The use of NPS has 63 

grown rapidly over the past decade and there have been increasing reports of the 64 

availability and manufacture of such substances, with the number of NPS reported 65 

globally more than doubling between 2009-2013 (UNODC 2014). In 2014 alone, 101 66 

NPS were for the first time reported to the EU Early Warning System (EMCDDA, 67 

2015a). Given the nature of the NPS market, with developers limited only by their 68 

imagination and ability to side-step legislation (Reid and Thomas, 2016) there is a 69 

sustained need to analyse the extent of the NPS problem. 70 

The analysis of wastewater to estimate (illicit) drug consumption based on biomarkers, 71 

has traditionally focussed on the most common illicit drugs - cocaine, cannabis, 72 

amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (ecstasy, 73 

MDMA) (Ort et al., 2014; Thomas et al., 2012), leaving a large information gap on 74 

other illicit drugs and NPS. Little research has been made on NPS and their suitable 75 

biomarkers, let alone their stability. In the few papers that have been published until 76 

now on the determination of NPS in wastewater, the target analytes included are 77 

commonly the synthetic cathinones mephedrone, methylone and MDPV (Baz-Lomba et 78 

al., 2016; Borova et al., 2015; Castrignanò et al., 2016; Chen et al., 2013; Kankaanpää 79 

et al., 2014; Kinyua et al., 2015a; Mwenesongole et al., 2013; Reid et al., 2014; Senta et 80 

al., 2015; van Nuijs et al., 2013). Within these studies, the most commonly detected 81 

NPS in wastewater are mephedrone and MDPV, generally found at the low ng/L range.     82 
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Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the 83 

technique of choice for the quantitative determination of illicit drugs in wastewater, due 84 

to the low concentrations involved and the high sensitivity of the instrument. In addition 85 

to the required validation at realistic concentrations that can be found in the samples, 86 

relevant issues must be considered, such as the way to correct/minimize matrix effects, 87 

and the proper identification of the compound detected. The use of isotopically-labelled 88 

internal standards (ILIS) is one of the most efficient tools to correct for matrix effects as 89 

well as potential losses from solid phase extraction (SPE). When utilising LC-MS/MS 90 

instruments in selected reaction monitoring (SRM) mode, at least two transitions should 91 

be incorporated in the method (one for quantification and the other(s) for confirmation). 92 

However, the specificity of the transitions should be taken into account, as non-specific 93 

transitions (such as the loss of water) can lead to false negatives due to the non-94 

compliance of ion ratios (Pozo et al., 2006).  95 

The purpose of this study was to develop and validate a sensitive LC-MS/MS method 96 

for the quantitative determination of a number of NPS of the synthetic cathinone and 97 

phenethylamine families: butylone, ethylone, methylone, naphyrone, methedrone, 98 

methylenedioxypyrovalerone (MDPV), mephedrone, 25-I-NBOMe, 25-C-NBOMe and 99 

25-B-NBOMe. These compounds were selected on the basis of their frequent detection 100 

in analytical, forensic and toxicological studies (Borova et al., 2015; Chen et al., 2013; 101 

Elliott and Evans, 2014; Ibáñez et al., 2014; Kankaanpää et al., 2014; Kinyua et al., 102 

2015a; Mwenesongole et al., 2013; Reid et al., 2014; Senta et al., 2015; Uralets et al., 103 

2014) as well as reports from the EMCDDA (EMCDDA, 2015b) and UNODC 104 

(UNODC, 2014). The developed method, using Oasis MCX SPE cartridges for sample 105 

pre-treatment, followed by UHPLC-MS/MS measurement, has been applied to influent 106 

wastewater samples from around Europe, with an additional study on stability being 107 
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made. Special emphasis is placed on the reliable confirmation of the NPS detected in 108 

water, with up to three SRM transitions being acquired, which, together with ion ratios, 109 

allowed simultaneous detection, quantification and confirmation of positive samples.   110 
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2. Experimental 111 

2.1 Chemicals and Materials 112 

See Supporting Information for this section as well as the structures of all compounds 113 

(Figure S1). 114 

2.2 Samples 115 

A number of different influent wastewater (IWW) samples were utilised in the 116 

development and validation of the present method: from Zurich, Switzerland; 117 

Copenhagen, Denmark and Castellon, Spain. The developed method was applied to 118 

IWW samples. The 24-h composite samples were taken in March 2015 from Zurich, 119 

Switzerland; Copenhagen, Denmark; Oslo, Norway; Castellon, Spain; Milan, Italy; 120 

Brussels, Belgium, Utrecht, The Netherlands and Bristol, United Kindom. All samples 121 

were collected in high density polyethylene bottles, transported to Castellon and stored 122 

in the dark at -20ºC until pre-treatment.  123 

2.3 Instrumentation 124 

A Waters Acquity UHPLC system (Milford, MA, USA) was interfaced to a triple 125 

quadrupole mass spectrometer (Xevo TQS, Waters Micromass, Manchester, UK) 126 

equipped with Z-Wave devices and an electrospray ionization interface (ESI) operated 127 

in positive-ion mode. The chromatographic separation was performed using an Acquity 128 

UPLC BEH C18 column, 1.7 μm, 50 mm × 2.1 mm (i.d.) (Waters) at a flow rate of 0.3 129 

mL min−1. The mobile phases used were water with 5 mM ammonium acetate and 130 

0.01% formic acid (solvent A) and MeOH with 0.01% formic acid (solvent B). The 131 

percentage of B changed linearly as follows: 0 min, 10 %; 3 min, 90 %; 3.5 min, 90 %; 132 

3.6 min, 10 %; 6 min 10 %, equilibration of the column. Cone gas as well as desolvation 133 
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gas was dry nitrogen, with flows set to 150 and 800 L h−1, respectively. For operation in 134 

MS/MS mode, collision gas was argon 99.995 % (Praxair, Madrid, Spain) with a 135 

pressure of 4×10−3 mbar in the collision cell (0.15 mL min−1). Further parameters 136 

optimized were: capillary voltage, 3.0 kV; source temperature, 150 °C and desolvation 137 

temperature, 650 °C. Dwell times of 0.01 s/transition were automatically selected. 138 

All acquired data were processed using MassLynx v4.1 software (Waters, Manchester, 139 

UK). 140 

2.4 Sample Pre-treatment 141 

All water samples were acidified to pH 2 with formic acid (98%), then centrifuged for 5 142 

minutes at 6000 rpm. SPE cartridges were conditioned with methanol (6mL), water 143 

(3mL) and acidified water (pH 2 with formic acid, 3mL). The IWW samples (100mL) 144 

were spiked with mixed surrogate ILIS to give a final in sample concentration of 20 145 

ng/L, then percolated through the cartridges at ±5 mL/min. The cartridges were then 146 

washed with 5 mL acidified methanol (pH 2 with formic acid) and dried under vacuum 147 

for 10 minutes. The analytes were eluted with 5 mL MeOH (2% ammonia), evaporated 148 

to dryness at 35ºC under nitrogen and reconstituted to 1mL with 10:90 methanol:water.  149 

Analyses were performed by injecting 3 μL of the final extract in the UHPLC-MS/MS 150 

system.  151 
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2.5 Quantification and Method Validation 152 

SRM mode was used to acquire all data, with the precursor ion of each compound being 153 

the protonated molecule.  In general, the most abundant product ion of each target 154 

analyte was used for quantification, with one or two additional product ions and their 155 

ion ratios used for confirmation. Furthermore, LC retention time was compared to that 156 

of reference standards (tolerance of ± 0.1 minutes). These steps are in line with the 157 

SANCO guidelines for analytical quality control and validation procedures (SANCO, 158 

2013), which has been utilised previously by research groups for quantification of illicit 159 

drugs in wastewater (Bijlsma et al., 2009). Each compound was quantified using its 160 

ILIS as a surrogate internal standard, except N-ethylcathinone and methedrone, which 161 

were quantified using butylone-d3 and methylone-d3, respectively. These ILIS were 162 

chosen based on their ability to correct for matrix effects as well as having similar 163 

retention times and chemical structures closely related to the analyte of interest.  164 

The performance of the method was evaluated in terms of linearity, limits of detection 165 

and quantification, accuracy and precision.  166 

The linearity was studied by analysing standard solutions in solvent in triplicate at seven 167 

concentration levels ranging from 0.5-100 ng/L. Linearity was deemed satisfactory 168 

when the correlation coefficient (r) was >0.99, using weighted (1/X) least squares 169 

regression.  170 

For limits of quantification and detection (LOQ and LOD), two different concentration 171 

levels (1 and 5 ng/L) were tested so as to provide a more accurate measure. The limit of 172 

quantification (LOQ) was established as the lowest level for which the method was fully 173 

validated using spiked IWW samples with satisfactory accuracy based on recovery 174 

experiments (between 70-120%) and precision (relative standard deviation (RSD) 175 
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≤20%). Furthermore, a minimum of two MS/MS transitions were required at the LOQ 176 

level for confirmation. All recovery experiments were performed in quintuplicate. 177 

The limit of detection (LOD) was estimated using blank samples spiked at the lowest 178 

analyte concentration tested, based on a signal-to-noise level of three from the 179 

quantification SRM chromatogram.   180 
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2.6 Stability experiments 181 

Stability experiments were performed under different conditions (IWW at natural pH 182 

and acidified to pH 2, filtered influent wastewater at natural pH and acidified to pH 2 183 

and MilliQ water) and at three different temperatures (20ºC, 4ºC and -20ºC) for 24 184 

hours, 48 hours, 7 days, and 30 days (at -20ºC only). The samples were each initially 185 

spiked at a concentration level of 100ng/L. One mL of each sample was collected at the 186 

time intervals outlined above and spiked with ILIS (100 ng/L) just before analysis.  187 

  188 
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3. Results and Discussion 189 

3.1 Selection of Compounds 190 

Only parent compounds were selected for this study. This is based on the previous 191 

metabolism studies performed on the selected ten  as well as related NPS in human and 192 

rat urine (Caspar et al., 2015; Ibáñez et al., 2016; Kamata et al., 2006; Mardal and 193 

Meyer, 2014; Meyer et al., 2010; Uralets et al., 2014), which showed that in spite of the 194 

number of metabolites identified, the parent compound could still be detected in urine. 195 

It has also been shown that the metabolic patterns of selected phenethylamine-based 196 

designer drugs show rather slow metabolism rates, with parent drugs being the primary 197 

biomarkers of consumption (Lai et al., 2015; Senta et al., 2015), somewhat expected 198 

due to their structural similarity to amphetamine and MDMA (Ort et al., 2014).   199 

In addition, for the phenethylamine-based 25-X-NBOMe compounds, the parent 200 

compound is generally used in both qualitative and quantitative toxicological studies 201 

(Kinyua et al., 2015b; Poklis et al., 2014; Tang et al., 2014). 202 

3.2 Instrument Optimisation 203 

Initially, all cone voltages were optimised concurrently for all compounds, using a 204 

mixed standard solution (10 µg/L), with the cone voltage ranging from 10-50 V at 10 V 205 

intervals. For all compounds, the precursor ion was [M+H]+. Collision energies were 206 

optimised for each compound independently using a collision energy ranging from 10-207 

50eV at 10eV intervals. The most sensitive transition was typically selected for 208 

quantification (Q) while an additional one (or two) were selected for confirmation (q).  209 

Some compounds only had two product ions of significant intensity, meaning that only 210 

two transitions (i.e. Q and q1 only) could be monitored (Table 1). Non-specific 211 

transitions such as the loss of water were avoided as much as possible (except for 212 
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methylone, mephedrone and N-ethylcathinone where they were used as confirmation 213 

transitions) in order to reduce the likelihood of false positives (Bijlsma et al., 2009). For 214 

the three 25-X-NBOMe compounds, the same product ions were seen (m/z 121 and 91), 215 

corresponding to the cleavage of the methoxybenzoyl moiety (m/z 121) and the further 216 

loss of the methoxy group producing the tropylium ion (m/z 91). These transitions are 217 

not very specific, and can come from any compound with a methoxybenzoyl moiety, 218 

however as there were no other transitions available for these compounds, they had to 219 

be used as quantification and confirmation transitions. Regarding the ILIS, only a single 220 

transition was monitored. 221 

The chromatographic separation was initially based on a mobile phase composed of 222 

water:MeOH, which resulted in very poor peak shapes. Different concentrations of 223 

ammonium acetate buffer and pH (formic acid) were investigated and the effects of pH 224 

and mobile phase ionic strength on the peak shapes, resolution and efficiencies were 225 

evaluated by varying the buffer concentration. An optimal mobile phase consisting of 226 

water with 5 mM ammonium acetate and 0.01% formic acid (solvent A) and MeOH 227 

with 0.01% formic acid (solvent B) was finally selected.  228 

3.3 Optimisation of extraction procedure 229 

An investigation into the filtration losses of these compounds was made in samples at 230 

both natural and pH 2, using a vacuum filter (Whatman, 0.45μm mixed cellulose ester 231 

membrane). It was found that for naphyrone and the 25-X-NBOMe compounds, less 232 

than 5% of the compounds were recovered following filtration, while for MDPV a 233 

recovery of 55-71% was found. (Table S1) With these results, filtration was not 234 

employed in this method, instead only centrifugation. 235 
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Two cartridges were evaluated in the optimisation of the SPE procedure: Oasis HLB 236 

and Oasis MCX, which are two of the most popular cartridges for the extraction of 237 

different types of illicit drugs in environmental waters (Baker and Kasprzyk-Hordern, 238 

2011). The backbone of the Oasis sorbents consists of apolar moieties (benzyl groups, 239 

aliphatic chains) and polar groups (pyrrolidone). HLB is only synthesised from these 240 

two monomers and is neutral. MCX has extra sulfonic acid functional groups 241 

(1.01mmol/g) implemented at a fixed location and contain permanently charged groups 242 

at any relevant pH (Bäuerlein et al., 2012).For both cartridges, 100 mL of IWW was 243 

spiked with the compounds (100 ng/L) before and after extraction and the recovery was 244 

used to determine the better cartridge for further optimisation.  No pH adjustment was 245 

made for the Oasis HLB cartridges, while for the MCX, samples were acidified (pH 2) 246 

in order to protonate the basic analytes, thereby enhancing their ionic interactions with 247 

the sorbent (Senta et al., 2015). This led to a reduction in matrix interferences, giving 248 

higher sensitivity and peak shapes for the majority of the compounds (Figure S2). The 249 

SPE procedure followed for the HLB cartridges was the same as in previously published 250 

studies. (Bade et al., 2015; Bijlsma et al., 2014) 251 

Higher recoveries were obtained when using Oasis MCX cartridges (Figure S3) and 252 

therefore these were selected for further optimisation. For the washing step, water, pure 253 

MeOH and acidified MeOH (pH 2) were tested. Drying under vacuum (or not) was also 254 

tested, to determine the optimal washing/drying steps (Figure S3).  255 

As seen in Figure S3, the optimal SPE procedure involved washing with 5mL acidified 256 

methanol and drying for 10 minutes, with recoveries ranging from 83%-93% (Figure 257 

S3, MCX 3). 258 
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In previous methods for NPS using MCX cartridges, different percentages of ammonia 259 

in methanol have been used for elution, ranging from 0.5% to 4% (Kinyua et al., 2015a; 260 

Reid et al., 2014; Senta et al., 2015; van Nuijs et al., 2013). A compromise of 2% was 261 

utilised in this work, and showed good recoveries for all compounds. An elution volume 262 

of 5mL of 2% ammonia in MeOH solution was finally chosen. This was based on the 263 

comparison of the recoveries of 5mL and 10mL elution volumes, with recoveries only 264 

2% less for the 5mL than the 10mL.    265 

3.4 Method Validation 266 

Before applying the developed methodology to IWW samples, the method was fully 267 

validated for linearity, precision and accuracy (recovery), LOD, LOQ and q/Q ratio 268 

(Tables 1 and 2). A calibration curve of seven points was made in solvent from 0.5-100 269 

ng/L (in triplicate). Correlation coefficients were greater than 0.99 for all compounds, 270 

except for naphyrone and the NBOMe compounds, which had values between 0.97-271 

0.98. For precision and accuracy, blank IWW samples were spiked at four concentration 272 

levels (1 ng/L, 5 ng/L, 10 ng/L and 50 ng/L), and analysed in quintuplicate. These two 273 

sets correspond to the different LOQs of some of the compounds (either1 ng/Lor 5 ng/L, 274 

see Table 1). Accuracy was measured by means of recovery, with all compounds 275 

showing satisfactory recovery (between 70-120%), and precision (all within RSD 20%). 276 

LOQs were estimated from a non-statistical point of view, utilising an LOQ objective: 277 

the lowest level in sample for which the method was fully validated in terms of 278 

accuracy and precision. This criterion has been utilised in the past in published results 279 

(Bijlsma et al., 2009) and is used in other fields, such as pesticide residue analysis 280 

(SANCO, 2013). This gives a   more realistic LOQ value, albeit generally higher than 281 

those estimated from statistical criteria (i.e. signal-to-noise of 10 at the lowest validation 282 
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level tested); thus, comparison of LOQs reported in the literature for different analytical 283 

methods is commonly difficult due to the distinct criteria applied by the authors. 284 

Average intensity q/Q ratios were calculated from reference standards in solvent of 285 

different concentrations (Table 1). With RSD% values ≤11% for all q/Q ratios, there 286 

was high confidence that the ratios are not concentration dependent.  These were 287 

compared to those experimentally obtained from sample extracts spiked at the lowest 288 

level validated. The aim of this was to test the robustness of these values and to check 289 

for potential matrix interferences that could affect the q/Q ratios and consequently, the 290 

confirmation process. As Table 2 shows, average q/Q deviations were all below 30% 291 

(SANCO, 2013), except for 25-I-NBOMe and 25-C-NBOMe at the lowest level of 1 292 

ng/L. This finding returns to the previous discussion of the non-specificity of the 293 

NBOMe transitions, whereby although these transitions could be seen at this level, 294 

matrix interferences let the q/Q deviations far exceed the threshold of the SANCO 295 

guidelines, which were being followed in this work. This led to the LOQ for these two 296 

compounds being increased to 5 ng/L.  297 

Matrix effects are a known drawback of LC-MS/MS, which can adversely affect the 298 

compounds of interest, leading to signal enhancement or suppression, thereby affecting 299 

the quantification process. These effects are most pronounced in more complex 300 

matrices, such as IWW. In this work, matrix effects were calculated by comparing the 301 

peak areas of Set 1 (SPE eluates (IWW previously extracted) spiked with the mixed 302 

standard and ILIS solutions) with Set 2 (mixed standard solution in solvent, including 303 

ILIS).  All samples were performed in triplicate and averaged to perform the following 304 

calculations (Matuszewski et al., 2003): 305 

Matrix effects (%) = 
average peak area (Set 1) 

average peak area (Set 2)
 ×  100 306 
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These calculations showed the true impact of the matrix on the compounds, with all 307 

showing significant matrix enhancement (Table 2). To correct for these interferences, 308 

ILIS were included in the calculation: 309 

Matrix effects (%) = 
average peak area (Set 1,ILIS) / average peak area (Set 2,ILIS)

average peak area (Set 1) / average peak area (Set 2)
 ×  100 310 

Including ILIS to the calculations led to corrected matrix effects under 10% for all 311 

compounds.   312 

Additional data pertaining to the use of ILIS is shown in Table 2, for SPE recovery and 313 

matrix effects, showing how well the ILIS are able to correct for matrix interferences.  314 
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3.5 In-sample Stability 315 

Stability of analytes is a matter of concern in any analysis, particularly when dealing 316 

with very low analyte concentrations in complex matrices such as wastewater. It is 317 

imperative that target analytes do not degrade during the 24-hour composite samples 318 

collection or during their storage before extraction. Composite samples are normally 319 

collected at 4°C and are stored either at that temperature, or at -20°C, depending on the 320 

time lapsing between collection and extraction(Senta et al., 2015), while extraction is 321 

usually carried out at room temperature. For these reasons, the stability of the target 322 

analytes in this study was studied at 4°C, -20°C and 20°C. The study was carried out in 323 

both raw and filtered wastewater (as some research groups filter their samples prior to 324 

storage) as well as in Milli-Q water. Furthermore, the impact of acidification was also 325 

examined, with the samples examined at both natural pH and at pH 2.  326 

In this section, low (60-100% transformation), medium (20-60% transformation) and 327 

high stability (0-20% transformation) is defined as by McCall et al(McCall et al., 2016), 328 

with all results being normalised to t=0. It must be stated that there was little difference 329 

between the filtered and unfiltered wastewater for most analytes, with the compounds 330 

less stable at natural pH. At 20ºC, N-ethylcathinone and mephedrone, showed low 331 

stability after 24 hours. However, at pH 2, all compounds exhibited high stability at all 332 

temperatures, for at least 7 days.  333 

The results show that if the samples are not acidified they should be refrigerated (at 334 

4°C), or frozen (at -20°C), and analysed within 7 days to ensure that no significant 335 

degradation occur. Alternatively, if samples are acidified to pH 2, all investigated 336 

compounds are more stable and can even be maintained at room temperature for up to 7 337 

days. However, after 30 days, there were some distinct stability issues with some 338 
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compounds: mephedrone, methedrone and butylone all exhibiting low stability (up to 339 

84% transformation); N-ethylcathinone, MDPV and methylone showing medium 340 

stability while the 25-X-NBOMe compounds and naphyrone still had high stability (less 341 

than 10% transformation) (Figure 1). All other results of the stability tests (i.e. in raw 342 

unacidified wastewater as well as both acidified and unacidified filtered wastewater and 343 

Milli-Q water) can be found in the supporting information (Figures S4-S7). These 344 

results also mirror those of the recent studies of Senta et al(Senta et al., 2015), and Reid 345 

et al (Reid et al., 2014), who investigated the stability of some of these compounds.  346 

Although compounds were found to be stable at pH 2 and -20ºC for at least one week, 347 

storage at lower temperatures have advantages in terms of green and sustainability 348 

analytical chemistry such as energy and cost saving. Furthermore, storage at -20ºC is 349 

sometimes limited and not always feasible for wastewater treatment plants and/or 350 

laboratories. In this regard, storage at 4ºC is possible for at least one week as tested in 351 

the current  study.  352 

3.6 Application to Real Samples 353 

A selection of samples from throughout Europe were investigated for the presence of 354 

NPS. In total, IWW from eight cities were investigated: Bristol, United Kingdom; 355 

Brussels, Belgium; Castellon, Spain; Oslo, Norway; Copenhagen, Denmark; Milan, 356 

Italy; Utrecht, The Netherlands and Zurich, Switzerland, with samples from weekends 357 

(Saturday and Sunday) and weekdays (Monday-Friday).  358 

In every sequence of analysis, water samples were injected between two calibration 359 

curves. Two quality control samples (QCs), i.e. a blank water sample (previously 360 

analyzed) spiked at LOQ and 10×LOQ levels, were also analysed. QC recoveries were 361 

considered satisfactory when they were in the range of 70–120% for each analyte. 362 



  

 

Page 20 of 36 
 

As shown in Table 3, mephedrone was the most commonly identified NPS, with 363 

concentrations ranging from <5 ng/L (Brussels, Oslo, Copenhagen and Utrecht) to 106 364 

ng/L (Bristol). The high concentrations found in Bristol are similar to another study in 365 

the United Kingdom, which found concentrations up to 114 (± 15) ng/L. (Castrignanò et 366 

al., 2016) These data also follow that from the UNODC, whereit is stated that 367 

mephedrone has the highest prevalence rate of any NPS in the United 368 

Kingdom(UNODC, 2014). The only other compounds confirmed in our study were 369 

methylone and MDPV, with concentrations ranging from below LOQ to 12 ng/L 370 

(methylone) and 6 ng/L (MDPV), with these low concentrations in line with previous 371 

studies in Croatia and Switzerland (Kinyua et al., 2015a; Senta et al., 2015). These 372 

overall results are also comparable with EMCDDA seizure data, with mephedrone 373 

(20%), methylone (7%) and MDPV (9%) some of the most commonly seized synthetic 374 

cathinones. Furthermore, the United Kingdom had one of the most synthetic cathinone 375 

seizures in Europe, implying a high consumption of these NPS (EMCDDA, 2015b). 376 

Figure 2 shows the confirmation of MDPV, mephedrone and methylonein three IWW 377 

samples. All show the compliance of all the necessary criteria: retention time 378 

compatibility with the standard (in the form of the QC), at least two transitions, and ion 379 

ratio within 30% for at least one confirmation transition. It must be noted that the q2/Q 380 

ratio for both MDPV and methylone are outside the accepted ±30% ion ratio window, 381 

but as the q1/Q ratio for both are within the window, both can be confirmed.  382 
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3.6.1 Occurrence of false positives 383 

With quantification methods, it is easy to distinguish positive findings from negative, 384 

using strict criteria such as ion ratio (±30%), retention time (± 0.1 min) and at least one 385 

additional, confirmatory transition. However, there are some scenarios where the rulings 386 

are not so obvious.  387 

For some compounds, only one, the most sensitive, transition may be observed, but may 388 

not be confirmed with a subsequent transition, suggesting that the compound could be 389 

present, although only at very low concentrations. If criteria are not strictly adhered to, 390 

this could lead to false positive findings. This was the case for MDPV in a sample from 391 

Zurich (Figure S8). Within this sample, the Q transition was found at the correct 392 

retention time, but the two q transitions were between 0.09-0.2 minutes away. This 393 

suggests that two different compounds were present in the samples showing the above 394 

transitions. Even though the shift in retention time itself is enough to reject the detection 395 

of this compound, the ion ratios were still checked. The q1 transition was found within 396 

the q/Q ratio threshold (30%). Although the q2 ratio was more than 100% lower than 397 

expected, if the sample was not well checked, it could have been erroneously assigned 398 

as a false positive on the basis of one q/Q ratio accomplishment.  399 

Figure S8 also shows the curious case of butylone, which seemed to have been detected 400 

in an IWW sample from Bristol. As this figure shows, all three transitions can clearly be 401 

seen, albeit at a retention time 0.17 minutes lower than in the quality control. Although 402 

one q/Q ratio is within the ±30% threshold, the fact that the retention time is greater 403 

than 0.10 minutes from the standard is enough evidence to say that this is not butylone. 404 

However, with all the same transitions present, there is a possibility that this compound 405 

could be related to butylone. Due to the retention time being less than the reference 406 
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standard, this compound could be a metabolite, which, due to its more polar 407 

characteristics would lead it to elute earlier. Alternatively, it could be a related 408 

cathinone-derivative, for example ethylone, which has the same fragmentation, and has 409 

been found in previous European samples (Kinyua et al., 2015a). However, more 410 

research is needed to confirm its identity. 411 

  412 
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Conclusions 413 

A very sensitive analytical method based on UHPLC-MS/MS has been developed for 414 

the determination of ten NPS of the synthetic cathinone and phenethylamine classes in 415 

influent wastewater. The overall analytical procedure, based on an off-line SPE step 416 

using Oasis MCX cartridges prior to the determination by UHPLC–MS/MS using a 417 

triple quadrupole analyzer, has been fully validated, obtaining satisfactory accuracy and 418 

precision. Extra emphasis was made on the SPE cartridge, clean-up step and matrix 419 

effects. An additional study was also made into the stability of these compounds in five 420 

matrices at -20°C, 4°C and 20°C, with advice given on the optimal means of storage. 421 

The method was tested on samples from throughout Europe, with mephedrone, 422 

methylone and MDPV able to be identified in various samples.  These data support the 423 

applicability of the method to influent wastewaters, despite the very low concentrations 424 

observed, and also support the previous information available on NPS use in Europe, 425 

where these compounds are in agreement with prevalence and seizure data.  426 

In the future, with information on flow data for the IWW plants and metabolic data to 427 

correct for excretion, this method could be used to obtain accurate analytical 428 

concentrations which subsequently could allow the estimation of NPS consumption 429 

within a population.  430 
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Figure Captions: 611 

 612 

Figure 1: Stability of all compounds in raw IWW at (pH 2) at 20ºC (TOP), 4ºC 613 
(MIDDLE) and -20ºC (BOTTOM). Transformation (y axis) shows the value of the 614 
analyte remaining (i.e. a value of 20% means a transformation of 80%). The acceptable 615 

interval of 70-120% has also been included (black lines). 616 

Figure 2: Positive findings (from left to right) of MDPV, mephedrone and methylone in 617 

IWW of Milan, Bristol and Copenhagen, respectively. The uppermost transition for 618 

each compound is the confirmation (Q) transition in the QC (low, 5 ng/L), while the 619 

lower three are all from the sample. All include three transitions, and the q/Q ratio, 620 

together with the deviation from the QC.   621 

  622 
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Figure 1: 623 
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Figure 2: 625 
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Table 1: MS/MS optimised conditions for all studied compounds 627 

Compound 

Retention 

time 

(mins) 

Precursor 

ion 

[M+H]+ 

(m/z) 

Cone 

Voltage 

(V) 

Collision 

Energy 

(eV) 

Product 

Ions 

(m/z) 

LOQa 

(ng/L) 

LODb 

(pg L-1) 

q/Q ratio  

(RSD %) 

         

25-B-NBOMe 3.76 380.1 40 20 121.0 1 100  

    30 91.0   0.4 (6) 

25-C-NBOMe 3.70 336.1 20 20 121.1 5 70  

    40 91.0   0.6 (6) 

25-I-NBOMe 3.86 428.1 20 20 121.0 5 100  

    50 91.0   0.5 (6) 

Butylone 2.68 222.1 20 20 174.0 5 200  

    20 146.0   0.3 (6) 

    30 131.2   0.3 (7) 

Mephedrone 2.77 178.1 30 20 145.2 5 200  

    20 119.0   0.1 (11) 

    10 160.0   1.3 (7) 

Methedrone 2.57 194.1 20 20 161.1 5 200  

    20 146.0   0.4 (4) 

MDPV 3.11 276.2 50 20 175.1 1 200  
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    20 126.0   0.6 (5) 

    20 205.0   0.8 (9) 

Methylone 2.36 208.1 50 20 160.0 5 50  

    20 132.1   0.4 (6) 

    10 190.0   0.5 (11) 

Naphyrone 3.71 282.2 50 20 141.2 1 50  

    20 211.1   0.5 (6) 

    40 127.4   0.2 (6) 

N-ethylcathinone 2.42 178.1 20 10 130.0 5 200  

    20 117.1   1.1 (7) 

    30 160.1   0.7 (10) 

25-B-NBOMe-d3 3.76 383.3 40 20 124.0    

25-C-NBOMe-d3 3.70 339.1 20 20 124.0    

25-I-NBOMe-d3 3.86 431.1 20 20 124.0    

Butylone-d3 2.68 225.1 20 20 177.1    

Mephedrone-d3 2.77 181.1 30 20 145.2    

MDPV-d8 3.11 284.2 50 20 205.0    

Methylone-d3 2.36 211.1 50 20 163.1    

Naphyrone-d5 3.71 287.2 50 20 141.2    

aLOQ objective. Lowest concentration tested for the method being fully validated with satisfactory results. 628 
bLOD estimated for a signal-to-noise level of three from the quantification SRM chromatogram of blank samples spiked at the lowest analyte concentration tested. 629 
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Table 2:  Method validation for all compounds in IWW at 2 validation levels (all values are in %), together with recovery and matrix effects before and after correction with 630 
internal standard (n=5). Linearity is also shown. 631 

Compound 
Matrix effects 

(%)a 
q1/Q ratio q2/Q ratio SPE Recovery (%) Linearity 

   Lowb Highc Lowb Highc Lowb  Highc   

  No ILIS      No ILIS  No ILIS  

            

25-B-NBOMe -4 60 -11 (12) -9 (4) - - 106 (7) 87 (13) 104 (4) 89 (16) 0.9722 

25-C-NBOMe -7 50 -7 (8) -2 (0) - - 92 (9) 89 (14) 97 (7) 90 (15) 0.9737 

25-I-NBOMe -6 66 5 (8) -13 (1) - - 98 (9) 85 (16) 103 (6) 86 (16) 0.9722 

Butylone -6 29 -13 (12) -4 (6) 24 (26) -11 (4) 100(10) 91 (13) 101 (4) 89 (8) 0.9923 

MDPV -7 48 6 (8) 10 (4) 17 (13) 9 (8) 98 (10) 94 (8) 98 (9) 91 (10) 0.9900 

Mephedrone -9 26 -6 (11) 12 (4) 0 (5)d 15 (4)d 94 (10) 90 (8) 97 (7) 85 (6) 0.9914 

Methedrone -10 31 -12 (4) -7 (6) - - 103 (8) 83 (7) 104 (5) 87 (7) 0.9923 

Methylone -6 30 6 (7) -1 (8) d d 101 (8) 93 (4) 101 (4) 84 (7) 0.9919 

Naphyrone -10 62 -5 (5) -7 (9) -5 (9) -13 (3) 108 (10) 86 (10) 101 (8) 87 (15) 0.9883 

N-ethylcathinone 3 27 -33 (21) 1 (7) d 5 (6)d 96 (7) 74 (12) 98 (7) 83 (5) 0.9975 

ILIS (Isotopically-labelled Internal Standard)  632 
a: for matrix effects, a negative value (-) denotes matrix suppression, while positive values indicate matrix enhancement.  633 
b: Low refers to the LOQ value of all compounds: 1 ng/L for MDPV, Naphyrone and 25-B-NBOMe and 5 ng/Lfor all other compounds 634 
c: High refers to the 10xLOQ value of all compounds: 10 ng/L for MDPV, Naphyrone and 25-B-NBOMe and 50 ng/Lfor all other compounds 635 
d: These transitions were for a loss of water. The non-specificity associated with these transitions combined with the complex IWW matrix led to some of these transitions 636 
being non-observed/interfered. However, as they were all q2 transitions, the method could still be validated based on q1. 637 
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Table 3: Concentrations (in ng/L) of investigated NPS in IWW throughout Europe (weekday/weekend) 638 

Compound Bristol Brussels Castellon Copenhagen Milan Oslo Utrecht Zurich 

N-ethylcathinone - - - - - - - - 

MDPV - - - - -/3 -/2 - 6/- 

Mephedrone 61/106 d/- - 5/5 - d/d -/d -/d 

Methylone -/d - - -/12 - - 7/5 - 

Butylone - - - - - - - - 

Methedrone - - - - - - - - 

Naphyrone - - - - - - - - 

25-B-NBOMe - - - - - - - - 

25-I-NBOMe - - - - - - - - 

25-C-NBOMe - - - - - - - - 

d: detected, at a concentration below LOQ; -: not detected (<LOD) 639 
 640 

 641 


