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This work combines experimental and computational techniques to exploit the best of both methodologies and thus 

provide a tool for understanding the geometry, cluster coordination, electronic structure, and optical properties of 

Ag4V2O7 crystals. This tool has been developed to create structural models and enable a much more complete and rapid 

refinement of 3D (Third Dimension) structures from limited data, aiding the determination of structure-property 

relationships and providing critical input for materials simulations. Ag4V2O7 crystals were synthesized by a simple 

precipitation method from aqueous solution at 30 °C for 10 min. The obtained crystals were characterized by X-ray 

diffraction (XRD) and Rietveld refinement, and micro-Raman spectroscopy. The crystal morphology was determined by 

field emission scanning electron microscopy (FESEM), and the optical properties were investigated by ultraviolet-visible 

(UV-vis) diffuse reflectance spectroscopy and photoluminescence (PL) measurements. The geometric and electronic 

structures of Ag4V2O7 crystals were investigated by first-principles quantum-mechanical calculations based on the density 

functional theory. The theoretical results meet the experimental data to confirm that Ag4V2O7 crystals have an 

orthorhombic structure, and that the building blocks of the lattice comprise two types of V clusters, [VO4] and [VO5], and 

two types of Ag clusters, [AgO5] and [AgO6]. This type of fundamental studies, which combine multiple experimental 

methods and first-principles calculations, have been proved valuable to obtain a basic understanding of the local structure, 

bonding, electronic, and optical properties of Ag4V2O7 crystals.  

 

1. Introduction 

In recent years, silver vanadates (AgVO3, Ag2V4O11, Ag3VO4, 

Ag4V2O7, etc.)  have attracted increasing attention due to their 

widespread potential applications resulting from their special 

optical, electronic, and chemical properties
1-18

. The excellent 

properties of silver vanadates can be attributed to the 

flexibility of their geometric structure, in which Ag and V ions 

can adopt different local coordinations, as well as the 

electronic properties associated to the hybridization of the 

valence bands of the V 3d, O 2p, and Ag 4d orbitals, yielding a 

narrow band gap and highly dispersed valence bands
19-21

. 

Among the reported silver vanadates, silver pyrovanadate 

(Ag4V2O7) has drawn extensive interest in the field of 

photocatalysis
6,7,10

. Various techniques, such as 

mechanochemical reactions
22

, oxide mixture or solid-state 

reaction
2
, precipitation with calcination at long times

2
, and 

molten metal fluxes
23

 have been reported. However, these 

methods require high temperatures, long processing times, 

and sophisticated equipment with high maintenance costs. In 

addition, the final product is obtained with some deleterious 

phases, such as V2O5, amorphous AgVO3, Ag3VO4, and Ag2O, 

with inhomogeneous sizes and shapes. To avoid these 

drawbacks, several synthetic routes have recently been 

developed and employed in the preparation of Ag4V2O7 micro 

and nanocrystals
10,24

, and pure Ag4V2O7 crystals have been 

obtained through several wet chemistry-based techniques, 

such as conventional and surfactant-assisted hydrothermal 

syntheses
5,7,9,25

 or microemulsions
26

. These methods 

circumvent the problems encountered in earlier synthetic 

methods and facilitate the synthesis of single phase crystals 

with homogeneous sizes and shapes. In particular, our lab has 

successfully achieved the preparation of various complex 

ternary metal oxides, including -Ag2WO4
27

 and -Ag2WO4
28

, 

using facile and readily scalable techniques in environmentally 

friendly solvents (water) at low processing temperatures. 

To the best of our knowledge, the geometric and electronic 

structures of Ag4V2O7 crystals have not been investigated 
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either theoretically or experimentally. This encouraged us to 

investigate the geometry, cluster coordination, and electronic 

structure of Ag4V2O7 microcrystals. Five years ago, our research 

groups initiated a major experimental and theoretical 

collaboration to elucidate the structure, chemical bonding, 

electronic, and optical properties of numerous ternary metal 

oxide photocatalysts, bactericides, sensors, photoluminescent 

complexes, etc., such as -Ag2WO4
27,29-31

, -Ag2WO4
28,32

, -

Ag2MoO4
33

, and Ag3PO4
34, 35

. These studies have made 

significant advances in the formal understanding of the 

properties and application of these compounds at a qualitative 

or semiquantitative level, by combining experimental data and 

first-principles calculations. 

Here, we report for the first time the synthesis of Ag4V2O7 

microcrystals by a simple precipitation method at low 

temperature. The synthesized Ag4V2O7 crystals were 

characterized by X-ray diffraction (XRD) and Rietveld 

refinement, Raman spectroscopy, field emission scanning 

electron microscopy (FESEM), ultraviolet-visible (UV-vis) 

diffuse reflectance spectroscopy, and photoluminescence (PL) 

measurements. First-principles quantum-mechanical 

calculations using density functional theory (DFT) were carried 

out in order to correlate the results of XRD, Raman 

spectroscopy, FESEM, and the PL measurements forAg4V2O7. 

There is a need to link the length and complexity scales 

between the levels of theory used in calculations and the 

variable space in which experiments take place; the present 

work can thus be considered an attempt to bridge this gap. 

2. Method Experimental and Theoretical 

2.1. Experimental details 

The precursors utilized in this synthesis were silver nitrate, 

AgNO3 (99,0% purity, Synth) and ammonium monovanadate, 

NH4VO3 (99% purity, Aldrich). Initially, 1×10
-3

 mol de NH4VO3 

were dissolved in 60 mL distilled water at 30°C, under 

magnetic stirring for 15 minutes. Then, 1×10
-3

 mol of AgNO3 

were dissolved in 15 mL distilled water, under magnetic 

stirring for 15 minutes, to this solution was added a few drops 

of ammonium hydroxide (NH4OH) (30% in NH3, Synth) until the 

solution becomes clear. Both solutions were quickly mixed, 

promoting the instantaneous formation of solid Ag4V2O7 

precipitates (orange coloration). To accompany the change of 

morphologies, the PM was performed at 30 ºC for 10 min. The 

precipitate was centrifuged, washed with distilled water 

several times, and dried in a conventional furnace at 60 ºC for 

some hours. 

 

2.2. Characterization 

X-ray diffraction using a Rigaku-DMax/2500PC (Japan) with Cu 

Kα radiation (λ = 1.5406 Å) in the 2θ range from 10° to 80° 

with a scanning rate of 0.02°/min. Micro-Raman spectroscopy 

was carried out using an T64000 spectrometer (Horiba obin-

Yvon, Japan) coupled to a CCD Synapse detector and an argon-

ion laser, operating at 514 nm with maximum power of 7 mW. 

The spectra were measured in the range from 100 cm
-1

 to 

1100 cm
-1

. UV-vis spectra were obtained in a Varian 

spectrophotometer model Cary 5G (USA) in diffuse reflection 

mode. The morphologies were investigated with a field 

emission scanning electron microscopy (FE-SEM) Supra 35-VP 

Carl Zeiss (Germany) operated in 15 KV.  The PL measurements 

were performed with a Monospec 27 monochromator Thermal 

Jarrel Ash (USA) coupled to a R446 photomultiplier 

Hamamatsu Photonics (Japan). A krypton ion laser Coherent 

Innova 90 K (USA) (λ = 350 nm) was used as excitation source, 

keeping its maximum output power at 500 mW. All 

experiments measurements were performed at room 

temperature. 

 

2.3. Theoretical Calculations 

Calculations on the periodic Ag4V2O7 structure were performed 

with the CRYSTAL14 sofware package
36

. Tungsten was 

described by a large-core ECP, derived by Hay and Wadt, and 

modified by Cora et al.
37

.
 

Silver and oxygen centers were 

described using HAYWSC-311d31G and O (6-31d1G) basis sets, 

respectively, which were taken from the Crystal web site
38

. A 

Range-separated hybrid functional, the screened-Coulomb  

HSE06 was used in order to give the accurate band gaps for the 

computed structures. The diagonalization of the Fock matrix 

was performed at adequate k-points grids in the reciprocal 

space. The thresholds controlling the accuracy of the 

calculation of the Coulomb and exchange integrals were set 

to10
-8

 and 10
-14

, and the percent of Fock/Kohn-Sham matrices 

mixing was set to 40 (IPMIX keyword)
36

. The empirical 

correction scheme to energy that considers the long-range 

dispersion contributions proposed by Grimme
39

 and 

implemented by Bucko et al.
40

 for periodic systems was used. 

In the relaxed configuration, the forces on the atoms are less 

than 0.0001 hartree/bohr = 0.005 eV/Å, and deviations of the 

stress tensor from a diagonal hydrostatic form are less than 

0.1 GPa. The band structure and the density of states (DOS) 

projected on atoms and orbitals of bulk Ag4V2O7 was 

constructed along the appropriate high-symmetry directions of 

the corresponding irreducible Brillouin zone. The vibrational-

frequencies calculation in CRYSTAL is performed at the -point 

within the harmonic approximation, and the dynamic matrix is 

computed by the numerical evaluation of the first derivative of 

analytical atomic gradients. 

First-principles total-energy calculations on the periodic 

Ag4V2O7 structure were performed within the density 

functional theory (DFT) along with projector augmented wave 

(PAW) potentials implemented in the VASP program
41

. The 

Kohn-Sham equations were solved using the screened hybrid 

functional proposed by Heyd, Scuseria, and Ernzerhof (HSE)
42

, 

in which a percentage of exact nonlocal Fock exchange was 

added to the Perdew, Purke, and Ernzerhof functional (25%), 

with a screening of 0.2 Bohr
−1

 applied to the partition of the 

Coulomb potential into long-range and short-range terms. The 

plane-wave expansion was truncated at cut-off energy of 400 

eV and the Brillouin zones were sampled through Monkhorst-

Pack special k-points grids to ensure geometrical and energetic 

convergence. Conjugate gradient algorithms were used for 
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unit-cell relaxations and atomic positions, until the residual 

forces and stress in the equilibrium geometry were of the 

order of 0.005 eV Å
-1

 and 0.01 GPa, respectively. The band 

structure and the density of states (DOS) projected on the 

atoms and orbitals of bulk Ag4V2O7 were constructed along the 

appropriate high-symmetry directions of the corresponding 

irreducible Brillouin zone. Vibrational-frequency calculations 

were performed at the -point within the harmonic 

approximation, and the dynamic matrix was computed by a 

numerical evaluation of the first derivative of the analytical 

atomic gradients. 

3. Results and discussion 

3.1. XRD pattern and Rietveld refinement analysis 

Figures 1(a) and 1(b) show the XRD pattern and Rietveld 

refinement plot of the Ag4V2O7 microcrystals, respectively. 

 
(a) 

 
(b) 

Fig. 1: (a) XRD patterns of 3D hexagons-like Ag4V2O7 microcrystals 
obtained at 30 ºC for 10 min and (b) Rietveld refinement plots 3D 
hexagons-like Ag4V2O7 microcrystals, respectively. The vertical lines in 
black colour indicate the position and relative intensity of the 
Inorganic Crystal Structure Database (ICSD) card No. 38065 for Ag4V2O7 

phase, respectively. 

 
Ag4V2O7 was first characterized by Masse et al. 

23
 and Fig. 

1(a) shows the XRD pattern corresponding to the 

orthorhombic structure, in agreement with the corresponding 

Inorganic Crystal Structure Database (ICSD) card N
o
. 38065 for 

the pure Ag4V2O7 phase 
23

. According to the literature 
23

, pure 

Ag4V2O7 microcrystals present a space group (Pbca),a point-

group symmetry (   
  ), and sixteen molecular formula units 

per unit cell (Z = 16). In order to confirm this result, a structural 

refinement by means of the Rietveld method 
43

, based on the 

construction of diffraction patterns calculated according to a 

structural model 
44

, was performed using the general structure 

analysis (GSAS) program 
45.  

The calculated patterns were adjusted to fit the observed 

patterns and thus provide the structural parameters of the 

material and the diffraction profile. In this work, the Rietveld 

method was applied to adjust the atomic positions, lattice 

parameters, and unit cell volume. Figure 1(b) shows that the 

structural refinement results are mostly consistent with the 

ICSD No. 38065 reported by Masse et al.
23

. However, the low-

angle region, where the most intense peaks are located, 

reveals a major difference related to narrow peaks and high 

intensities in the pattern. 

The quality of a structural refinement is generally 

examined using R-values (Rwp, RBragg, Rp, χ
2
, and S).These values 

were determined for our crystals and found to be consistent 

with an orthorhombic structure. However, the experimentally 

observed XRD patterns and theoretically calculated data 

display small differences near zero on the intensity scale, as 

illustrated by the line YObs–YCalc. More details regarding the 

Rietveld refinement results are displayed in Table S1. The 

Rietveld refinement plot for the Ag4V2O7 microcrystals is 

shown in Fig. 1(b). 

 

3.2. Unit cell representation and symmetry, geometry, and 

coordination of the clusters in Ag4V2O7 crystals  

Figures 2(a) and 2(b) show a schematic representation of the 

orthorhombic Ag4V2O7 unit cell in which different clusters, i.e. 

the local coordination of V and Ag atoms, are depicted. The 

symmetry, geometry, and coordination data for each cluster, 

as well as the lattice parameters and atomic positions 

calculated by geometry optimization, are listed, while those 

obtained from the Rietveld refinement data are presented in 

Table S1. 

 
(a) 
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(b) 

Fig. 2: Schematic representation of the (a) orthorhombic unit cells 
corresponding to pure Ag4V2O7 crystals and (b) their clusters, respectively. 

The unit cell shown in Fig. 2(a) and Fig. 2(b) was modeled 
through the Visualization System for Electronic and Structural 
Analysis (VESTA) program (version 3.3.2 for Windows 7-64-
bit)

46, 47
. Analysis of the results indicated that two types of 

clusters are the main building blocks of the structure for both 
V and Ag atoms: [VO4] and [VO5], in which V atoms are 
coordinated to four and five O atoms, respectively, and [AgO5] 
and [AgO6], in which Ag atoms are linked to five and six O 
atoms, respectively. The different types of local coordination 
for the Ag and V atoms, together with the Ag–O and V–O bond 
lengths corresponding to the minima, Dmin, and maxima, 
Dmax, are listed in Fig. 2(a). Analysis of the results revealed 
that [VO4] and [VO5] clusters are distorted tetrahedral and 
distorted trigonal bipyramidal polyhedral clusters, 
respectively. V1 and V4 (Fig. 2(a)) form distorted trigonal 
bypiramidal [VO5] clusters, while V2 and V3 form tetrahedral 
[VO4] clusters. Atoms Ag1 and Ag7, as well as Ag8,are 
coordinated to five O atoms, forming distorted square-based 
pyramidal and distorted trigonal [AgO5] clusters, respectively; 
while Ag2, Ag3, Ag5, and Ag6 are bonded to six O atoms, which 
form distorted octahedral [AgO6] clusters;andAg4 is at the 
center of a distorted triangular prism [AgO6].  

The lattice parameters, unit-cell volume, and internal 
atomic coordinates for Ag4V2O7from the Rietveld refinement 
and DFT calculations are reported in Table S1 (a) and (b) (SI), 
respectively. Analysis and comparison of both theoretical and 
experimental results show variations in the atomic positions of 
O atoms, associated with the fact that these atoms do not 
occupy fixed positions in the orthorhombic structure. Large 
variations in the position of O atoms in the lattice are also 
found in the structure. These findings explain why assignment 
of the atomic positions of O atoms is difficult, since subtle 
atomic rearrangements occur. 

In order to interpret these data, we presume that these 
disagreements in the atomic positions of O atoms are 
attributed to the nature of the starting sample (polycrystalline 
powder or single crystal). Although single-crystal data are 
essential for the refinement of crystal-structure models, we 
believe that the formation of different distortions in the 

cluster coordination, [AgOy] (y = 5 and 6) and [VOz] (z = 4 and 
5), can lead to the formation of different types of distortions in 
the Ag–O and/or V–O bonds, as well as the O–Ag–O and/or O–
V–O bond angles. This is due to the fact that cluster rotation 

influences the Ag–O and V–O bond lengths, as well as the Ag–

O–Ag and V–O–V bond angles, due to the shift of the oxygen 

ions from the edge of the ideal structures. Therefore, the 
differences in both Ag–O and V–O bond lengths and O–Ag–O 
and O–V–O bond angles result in intrinsic structural order–
disorder in this type of lattice, and Ag4V2O7 crystals thus 
present different levels of distortion in their crystalline lattice 
due to the variety of coordination polyhedra. Subsequently, 
the positions of O, V, and Ag atoms are variable. A similar 
phenomenon has been previously reported for the α-Ag2WO4

48
 

and -Ag2WO4 phases
28

. XRD experiments provide only 
average structures.  

A better understanding of the properties of this material 
requires more detailed information on local structures and cell 
parameters. In other words, if there is partial order in the 
distribution of Ag and V atoms, crystal cells observed at the 
local level should be different from those determined by XRD 
measurements. Raman spectroscopy probes the full 
vibrational spectrum of interest since it is sensitive to short-
range structural order, i.e., the local coordination at both Ag 
and V centers. 
 
3.3. Micro-Raman spectroscopy analysis 

Raman spectroscopy can be employed as a probe to 

investigate the degree of structural order–disorder in 

materials at short-range; in our case, the local coordination of 

both Ag and V atoms associated to different clusters, [AgOy] (y 

= 5 and 6) and [VOz] (z = 4 and 5), as the building blocks of 

Ag4V2O7 crystals. To the best of our knowledge, the Raman 

characteristics of Ag4V2O7 have not been previously reported, 

either theoretically or experimentally. Consequently, we 

extended our systematic structural investigation toward 

Raman spectroscopy and the theoretical analysis of the 

vibrational modes of Ag4V2O7.The micro-Raman spectrum of 

Ag4V2O7 microcrystals is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 3: Micro-Raman spectra of 3D hexagons-like Ag4V2O7 microcrystals and 
comparison between the relative positions of the theoretical and 
experimental Raman-active modes, respectively. 

 

The micro-Raman spectrum revealed the presence of only 

fifteen Raman-active vibrational modes (Ag, B1g, B2g,and B3g). It 
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is notable that the Raman spectrum of the synthesized crystals 

exhibits broad vibrational modes, indicating short-range 

structural disorder. This characteristic can be related to very 

rapid kinetics under the synthetic conditions and to intrinsic 

structural disorder in the lattice, as demonstrated by the 

Rietveld refinement and first-principles calculations.  

Therefore, Ag, and Bg are Raman-active modes, and Au, B1u, 

B2u and B3u are active vibrational modes in the infrared 

spectrum. The A and B modes are nondegenerate; subscripts 

‘‘g” and “u’’ indicate the parity under inversion in 

centrosymmetric Ag4V2O7 crystals. 

Analysis of the micro-Raman spectrum presented in Fig.3 

revealed that the strongest Raman-active modes appear 

above770 cm
-1 

with symmetry B2g, dominated by a Raman-

active mode at 790 cm
-1

 related to the asymmetric stretching 

of the distorted trigonal bipyramidal [VO5] clusters with 

character B1g or B3g. Other two B2g Raman-active modes at 810 

and 830 cm
-1

 are prominent, derived from the symmetric-

stretching vibration of the distorted tetrahedral [VO4] clusters.  

According to group theory, crystals with orthorhombic 

structure, space group (Pbca), point-group symmetry (   
  ), 

and eight molecules per unit cell (Z = 8) exhibit 312 vibrational 

modes in the center of the Brillouin zone (      ), as given by 

the equation 
49

: Raman+Infrared(Crystal Primitive) =         

                                       

                . However, our 3D hexagon-like Ag4V2O7 

microcrystals have sixteen molecules per unit cell (Z = 16) and 

display 624 vibrational modes according to the following 

equation: Raman+Infrared (Crystal Primitive) =                 

                                       

        .  

The 312 theoretical Raman-active modes are shown in 

Table S2 (SI) and can be organized into two different groups. 

The first group is composed of modes in the frequency range 

of 13 to 508 cm
-1

 and is related to lattice phonons and the 

motion of distorted trigonal bipyramidal [AgO5] clusters and 

distorted octahedral/triangular prism [AgO6] clusters. These 

modes are basically associated to symmetric and/or 

asymmetric bending modes of the distorted tetrahedral [VO4] 

clusters and distorted trigonal bipyramidal [VO5] clusters. In 

the second group, at high frequencies and separated by a 

phonon gap of nearly 173 cm
-1

,are the modes corresponding 

to symmetric and/or asymmetric stretching of the distorted 

trigonal bipyramidal [VO5] and distorted tetrahedral [VO4] 

clusters.  

A comparison of the experimental Raman active modes 

with the closest theoretically calculated ones is presented in 

Table S3.  

A good agreement between the experimental and 

calculated Raman-active modes is observed, and these results 

allow us to confirm the 3D hexagon-like structure of the 

Ag4V2O7 microcrystals obtained in this work. 

FE-SEM images of the microcrystals are depicted in Fig. 

4(a–c). Fig. 4(a) shows a large quantity of small Ag4V2O7 

microcrystals with a well-defined 3D hexagon-like morphology. 

Moreover, some of these hexagons have surface defects and 

are formed by small nanocrystals through a self-assembly 

process due to environment during the synthetic process. The 

microcrystals have an average size of approximately 2.7 μm 

width with a thickness of about 1 μm, and are formed through 

the aggregation of several nanocrystals and plates with an 

average size of approximately 375 nm, as can be seen in Fig. 

S2(a–d)(SI). These microcrystals have only 8 faces in the first 

few minutes of the reaction; however,  after 10 min of the 

reaction at 30 °C, fast growth occurs to afford 3D hexagon-like 

Ag4V2O7 microcrystals with 14 faces, as shown in Fig. S2(e) (SI). 

In Fig. 4(b), a series of Ag4V2O7 microcrystals with a more 

defined shape can be observed due to thermodynamic 

processes and the chemical synthesis method employed. We 

also note that these crystals display a very regular shape and 

size, as is evident from Fig. 4(c) and the computationally 

simulated crystal shape shown in the inset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4: FE-SEM images for 3D hexagons-like Ag4V2O7 microcrystals: (a) low 
magnification, (b) intermediate magnification and (c) high magnification, (d) 
Crystal shape simulated computationally and their optimized surface 
energies (J/m2) and (e) Crystal shape theoretical for Ag4V2O7 microcrystals 
using BPE level, respectively. 

 

Using a specific methodology, which has been applied to 

study morphologies of various metal oxides such as SnO2
50

, 

PbMoO4
51

, and CaWO4
52

, we developed a combination of 

experimental studies with first-principles calculations to 

deeper investigate electronic, structural, and energetic 

properties controlling the morphology and related 

transformation mechanisms of various metals and metal 

oxides such as Ag, anatase TiO2, BaZrO3, and α-Ag2WO4
53

 as 

well as Co3O4, Fe2O3, and In2O3
54

. These cited papers contain a 

description of the method for the calculation of the surface 

energies, which were used to characterize the corresponding 

surface morphologies using Wulff constructions. 
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The (100), (010), (001), (110), (101), (011), and (111) 

surfaces of the orthorhombic Ag4V2O7 system were modeled 

by unreconstructed (truncated bulk) slab models using the 

calculated equilibrium geometry (a = 18.752 Å, b = 11.090 Å, c 

= 13.504 Å) and introducing a vacuum spacing of 15 Å in the z-

direction so that the surfaces do not interact with each other. 

After the corresponding convergence test on the system, slab 

models containing 8 molecular units were selected, with areas 

of 149.8 Å
2
, 153.2 Å

2
, 208.0 Å

2
, 294.2 Å

2
, 256.4 Å

2
, 327.7 

Å
2
,and 360.3 Å

2
, for the (100), (010), (001), (110), (101), (011), 

and (111) surfaces, respectively. Analysis of the theoretical 

results indicates that the most stable surfaces are the (110), 

(111), and (101) facets, which can form an ideal morphology 

(shown in Fig. 4(d)).  

When the relative stability of the facets changes (increases 

or decreases), more than one facet type appears in the 

resulting morphology, resulting in morphology variations. A3D 

hexagon-like Ag4V2O7 morphology with 14 faces is obtained if 

the surface energies of (110) and (010) increase to 0.60 and 

0.68 J/m
2
, respectively, and the surface energy of (100) 

decreases to 0.30 J/m
2 

(see Fig. 4(e)). However, a morphology 

having only 8 faces is produced when the surface energy of 

(100) decreases to 0.05 J/m
2 

and that of (011) and (001) equals 

0.5 J/m
2
. Thus, variations in the ratio between the values of 

the surface energy affect the related morphologies, which can 

be used to obtain correlations with the experimental results. 

Figs. 5(a,b) show the UV–vis diffuse reflectance spectra and 

calculated electronic band structure/density of states (DOS) of 

3D hexagons-like Ag4V2O7 crystals, respectively. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

(a) 
 

 

 

 

 

 

 

 

 

 
 
 

(a) 

Fig. 5: (a) UV-Vis spectrum and (b) band structure/DOS for 3D hexagons-like 
Ag4V2O7 microcrystals, respectively. 

As seen in Fig. 5(a), an Egap value of 2.45 eV was obtained 

for our 3D hexagon-like Ag4V2O7 microcrystals, as calculated by 

extrapolating the linear portion of the UV-vis curve and Fig. 

5(c) In principle, we believe that this behavior is related to 

presence of intermediary energy levels between the valence 

band (VB) and the conduction band (CB), since the exponential 

optical absorption edge and Egap are controlled by the degree 

of structural order–disorder in the lattice. Calculations yield a 

direct band gap value of 2.86 eV from Γ to the Γ points in the 

Brillouin zone and, for a simplified description, this difference 

can be mainly attributed to the distortions of both 

tetrahedral/trigonal bipyramidal [VOz] (z = 4 and 5) clusters 

and trigonal bipyramidal/octahedral [AgOy] (y= 6 and 5) 

clusters at short- and medium-range, and is present in Fig 5 

(b). 

 At this point, it is important to note that determination of 

the structural order–disorder in a crystalline solid plays a 

crucial role in the understanding of the relation between its 

physical properties and its electronic structure, and advanced 

methodologies allow nowadays for the precise control of the 

composition and properties of nanomaterials
55,56

. For a given 

material, structural disorder can present useful properties, 

such as ferroelectricity, piezoelectricity, and nonlinear optical 

behavior
57-60

. Therefore, it is important to create disorder in 

order to obtain new materials with unique physical properties 

that would be otherwise inaccessible in well-ordered crystal 

structures
61

. In this context, PL properties are environment-

sensitive and significantly affected by the structural order–

disorder degree that accompany changes in crystal size and 

morphology during the synthetic process. 

The PL spectrum at room temperature of Ag4V2O7 

microcrystals is shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 6: PL emission spectrum for 3D hexagons-like Ag4V2O7 microcrystals,  

 

The PL spectrum exhibits a typical broad band profile, 

which can be associated with multiphonon or multilevel 

processes, i.e., a solid system where relaxation occurs by 

several pathways that involve the participation of numerous 

energy states within the band gap. The PL spectrum covers a 

broad range of wavelengths, from 355 to 600 nm, centered at 
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450 nm in the blue region of the visible spectra for the 3D 

hexagon-like Ag4V2O7 microcrystals (see Fig. 6). 

The photoluminescence emission of vanadate-based 

compounds has been associated with charge transfer 

transitions from the oxygen ligands O
2-

 to the central 

vanadium ions V
5+

 in [VO4] tetrahedra, as well as complex 

cluster vacancies and/or modified lattices
62,63

. However, all 

these explanations are directly associated with    
   groups 

(ions, while Ag4V2O7 is a crystalline solid composed of a 

structural framework formed by interconnected ([VO4]–

[AgO5]–[VO4]–[AgO6]...) clusters (see Fig. 2(b)). Therefore, we 

can assume that the distorted tetrahedral [VO4] clusters and 

distorted trigonal bipyramidal [VO5] clusters are the main 

responsible through electronic transitions between the VB and 

CB. 

As there is an interconnection between the distorted 

trigonal bipyramidal [AgO5] clusters and the distorted 

octahedral [AgO6] clusters in the orthorhombic lattice, it is 

possible to conclude that any distortion caused on the [VO4] 

and [VO5] clusters also promotes a slight deformation of the 

O–Ag–O bonds that form part of the chain. The association of 

different vanadium and silver clusters yields a wide range of 

polarization charges with the formation of electron–hole pairs 

between clusters. In instances involving electronic conduction 

properties, these clusters are able to present cluster-to-cluster 

charge transfer (CCCT) from vanadium to silver (or vice-versa) 

by means of excitations involving electronic transitions. This 

CCCT mechanism induces the formation of different energy 

levels within the forbidden band gap (structural order–

disorder effect). Particularly, this phenomenon has its origin 

during the crystal formation and organization stages, which 

are directly dependent on interactions between 

tetrahedral/trigonal bipyramidal [VOz] (z= 4 and 5) clusters and 

trigonal bipyramidal/octahedral [AgOy] (y= 6 and 5) clusters. 

Therefore, these structural defects promote a symmetry 

break, causing polarization of the structure by electronic 

charge transfer from ordered (o) to disordered (d) clusters 

(formation of electron–hole pairs). The corresponding 

equations are presented in Support Information, S4. 

The PL bands arise from photogenerated electron–hole 

pair processes and the electronic transition between the VB 

(2p levels of O atoms and 4d levels of Ag atoms) and the CB (3d 

levels of V atoms). Breaking symmetry processes in these 

clusters with distortions and tilts create a huge number of 

different structures and subsequently different material 

properties related to local (short), intermediate, and long-

range structural order–disorder. 

4. Conclusions 

In summary, new research on the synthesis of Ag4V2O7 crystals 

with novel properties has attracted great attention because of 

the variety of their potential applications. This study not only 

provides new information on the geometry, cluster 

coordination, and electronic structure of Ag4V2O7 

microcrystals, but also illustrates the potential of combining 

experimental techniques and first-principles DFT calculations. 

This combination led us to develop a systematic procedure to 

study the structure and electronic DOS of Ag4V2O7. We found 

that it exhibits an orthorhombic structure, formed by two 

types of clusters of V atoms, [VO4] and [VO5], and two types of 

clusters of Ag atoms, [AgO5] and [AgO6]. These clusters act as 

building blocks for the Ag4V2O7 structure. Features in the 

Raman spectra were identified through comparison with 

calculated vibrational frequencies, and this confirmed the 

predicted structure of this material. The UV-vis spectrum 

indicated that Ag4V2O7microcrystals have a direct band gap 

with a value of Egap= 2.45 eV. The present work provides a new 

direction toward the design of this crystalline material and the 

search for practical applications in, for example, biology, 

catalysis, and photoluminescent materials. This knowledge 

may help in developing effective processing routines to 

enhance the performance of bulk heterojunction solar cells. 

With the combined insight provided by multiscale simulations 

and experiments, it may be possible to develop effective 

tempering routes to fine-tune the electronic structure of 

organic semiconductor materials. This would allow developing 

nanostructure arrays with great potential in technological 

applications such as optical sensors and photoelectronic 

materials.  
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