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Abstract  

The aminophosphine ligand (2-aminoethyl)diphenylphosphine (edpp) has been coordinated to the 

W3(µ3-S)(µ-S)3 cluster unit to afford the trimetallic [W3S4Br3(edpp)3]
+ (1+) complex in one step 

synthesis and high yields. Related [W3S4X3(edpp)3]
+ clusters (X= F-, Cl-, NCS-, 2+-4+) have been 

isolated by treating 1+ with the corresponding halide or pseudohalide salts. The structure of 

complexes 1+ to 4+ contains a W3S4 incomplete cubane-type cluster unit, and only one of the 

possible isomers is formed, the one with the phosphorous atoms trans to the capping sulphur and the 

amino groups trans to the bridging sulphurs. The remaining coordination position on each metal is 

occupied by X-. Detailed studies using stopped-flow, 31P{1H} NMR, and ESI-MS have been carried 

out in order to understand the solution behaviour and the kinetics of inter-conversion between the 1+, 

2
+, 3+ and 4+ species in solution. DFT calculations have been also carried out on the reactions of 

cluster 1+ with the different anions. The whole set of experimental and theoretical data indicate that 

the actual mechanism of substitutions in these clusters is strongly dependent on the nature of the 

leaving and entering anions. The interaction between an entering F- and the amino group coordinated 

to the adjacent metal have been also found to be especially relevant in the kinetics of these reactions. 
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Introduction  

Multifunctional catalysis in which metal-metal and metal-ligand interactions cooperate to chemically 

transform a substrate, as natural enzymes do, is a field of central interest nowadays.1 In this context, 

cuboidal M3S4 (M=Mo, W) cluster chalcogenides, represented in Figure 1, and their closely related 

heterobimetallic M3M’S4 (M’= transition metal) complexes, have been extensively investigated.2 In 

general molybdenum and tungsten M3S4 clusters are electron precise with six electrons for the 

formation of three metal-metal bonds and a formal oxidation state of +4 for the metals, Mo or W. 
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Figure 1. Two alternative views of the cuboidal M3S4L9 cluster, showing the capping (Sc ) and 

bridging (Sb) sulfur atoms. M-M bonds are omitted for clarity in the right side figure. 

 

Particular attention has been placed in our groups to their diphosphino 

[M3S4X3(diphosphine)3]
+ (X= halide, hydride) derivatives, because of the major role that transition 

metal complexes containing phosphines play in homogeneous catalysis.3-11 The coordination mode 

of the diphosphine ligands in these complexes affords a single isomer, represented in Figure 2, with 

one phosphorous atom trans to the capping sulfur (Sc) and one trans to the bridging sulfur (Sb) 

resulting in quiral clusters with C3 symmetry. All three metals share an identical coordination 

environment. In the last years, aminophosphines have emerged as versatile ligands because they 

combine the π-acceptor character of the phosphorous atom with the σ-donor properties of 

nitrogen.12-14 In addition, the NH moieties from the aminophosphine directly coordinated to the 

metal centre, can take part in the catalytic reaction by cooperation with the metal-bonded species.1 A 
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 4 

priori several isomeric forms are feasible upon coordination of a bifunctional ligand, such as 

aminophosphine, to the Mo3S4 unit assuming an analogous coordination to that of diphosphines as 

illustrated in Figure 2. 
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Figure 2. Structure of one of the two enantiomeric forms of [M3S4X3(diphosphine)3]
+ (left) and 

proposed isomeric structures for [M3S4X3(aminophosphine)3]
+ (right) 

 

To promote further development in the field of catalysis, it is essential to understand the 

substitution reaction mechanisms as well as to gather a detailed knowledge on the substrate-binding 

activation. For example, mechanistic studies on the proton transfer reaction between trinuclear 

diphosphino M3S4 (M= Mo, W) cluster hydrides and acids support the formation of dihydrogen-

bonded adducts by acid attack to the hydrides in the X sites of Figure 2 as intermediates or transition 

states.4,15-17 This finding led us to investigate the catalytic reduction of organic substrates mediated 

by these trimetallic hydrides. In collaboration with Beller`s group, we found that trinuclear Mo3S4 

hydrides functionalized with outer diphosphane ligands are excellent catalysts for the highly 

selective reduction of nitroarenes to the corresponding anilines.9 Tungsten and molybdenum M3S4 

hydrides bearing diphosphines are also active catalysts in the selective hydrodefluorination of 

pentafluoropyridine in the para position, using silanes as hydrogen sources.6 Motivated by the good 

catalytic performance of group eight and nine aminophosphino complexes in hydrogenation and 

transfer hydrogenation reactions, we decided to design synthetic procedures aimed to functionalize 

the highly robust W3S4 cluster core moiety with aminophosphine ligands.1,18-26 In particular, we have 
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 5 

chosen (2-aminoethyl)diphenylphosphine (edpp), bearing a NH2 function that can serve not only as 

coordination group but also as hydrogen donor or acceptor. This versatility is especially relevant in 

the field of multifunctional or self-assembled catalysis. 

The use of rational synthetic procedures for the preparation of trinuclear metal chalcogenides 

has contributed enormously to the development of the chemistry of transition metal clusters. 

Polymeric {M3Q7X4/2X2}n one-dimensional phases are the preferred starting material to entry the 

chemistry of incomplete cubane-type M3Q4 clusters containing bidentated phosphines, i.e.  dmpe 

(1,2-bis(dimethylphosphino)ethane) or dppe (1,2-bis(diphenylphosphino)ethane), as well as  

optically pure chiral diphosphines such as Me-BPE (1,2-bis[2,5-(dimethylphospholan-1-yl)] 

ethane).5,27,28 In the last case the synthesis came out to be enantioselective to afford optically pure 

cluster complexes in almost quantitative yields.  

Herein, we present the coordination of edpp to the W3S4 cluster unit to afford complexes of 

formula [W3S4X3(edpp)3]
+ (X= F, Cl, Br, NCS), closely related to the  [M3S4X3(diphosphine)3]

+ (M= 

Mo, W) compounds widely investigated in our groups.5,8,29,30 At this point, it is important to note 

that the kinetics and mechanism of substitution reactions in M3Q4 clusters have not been studied in 

detail, except for the case of the aqua clusters, which were comprehensively studied by the group of 

Sykes.31-35 During the course of the synthetic work with the [W3S4X3(edpp)3]
+ clusters it was 

observed that X ligands are easily substituted in acetonitrile solution and this prompted us to carry 

out a kinetico-mechanistic study of these reactions combining kinetic experiments and DFT 

calculations. The results obtained are reported in this paper and reveal a very rich mechanistic 

behavior. 

 

Experimental Section  

General Remarks.  

Elemental analyses were carried out on a EuroEA3000 Eurovector Analyser. Electrospray mass 

spectra were recorded with a Quattro LC (quadrupole-hexapole-quadrupole) mass spectrometer with 
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an orthogonal Z-spray electrospray interface (Micromass, Manchester, UK). The cone voltage was 

set at 20 V unless otherwise stated using CH3CN as the mobile phase solvent. Sample solutions have 

been infused via syringe pump directly connected to the ESI source at a flow rate of 10 µL/min and 

a capillary voltage of 3.5 kV was used in the positive scan mode. Nitrogen was employed as drying 

and nebulising gas. Isotope experimental patterns were compared with theoretical patterns obtained 

using the MassLynx 4.0 program.36 19F{1H} and 31P{1H}  NMR spectra were recorded on a Varian 

Innova 300 MHz and 500 MHz, using CD3CN as solvents and referenced to CFCl3 and 85% H3PO4, 

respectively. 

 

 Synthesis 

All reactions were carried out under a nitrogen atmosphere using standard Schlenck techniques. The 

solid polymeric {W3S7Br4}n  phase was obtained according to literature methods.37 Solvents were 

dried and degassed by standard methods before use. Edpp ligand was obtained from Strem 

Chemicals and used without further purification.   

[W3S4Br3(edpp)3]Br  (1(Br)) To a suspension of  {W3S7Br4}n  (0.200 g, 0.183 mmol) in CH3CN (80 

mL) was  sequentially added HBr 0.5 M (in CH3CN) (1.3 mL  0.650 mmol ) and edpp (0.275 g, 1.20 

mmol) under nitrogen and the reaction mixture was refluxed for 48 h. The reaction occurs with a 

color change from brown to blue. After the mixture was cooled to r.t., the suspension was filtrated, 

the green solution was concentrated under reduced pressure until one fourth of its initial volume and 

50 mL of ethanol were added. Then the desired product was precipitated with diethyl ether. Finally, 

the blue solid was separated by filtration and washed with ethanol: diethyl ether (1:10) to yield 0.190 

g  (62 % yield) of an air stable product characterized as 1(Br). 31P{1H} NMR (CD3CN, 121 MHz)  

δ= 15.2 (3P, s, 1JP-W = 93.7 Hz). ESI-MS (CH3CN, 20 V) m/z: 1607.9 [M+]. Anal. Calc. 

W3Br4S4N3P3C42H48: C, 29.9; H, 2.9; N, 2.5.  Found: C, 30.2; H, 3.1; N, 2.7 %. 

[W3S4Cl3(edpp)3 ]Br (2(Br)) To a dark blue solution of 1(Br) (0.050 g, 0.030 mmol) in CH3CN (25 

mL) was added Pr4NCl (0.044 g, 0.200 mmol) under nitrogen and the reaction mixture was stirred 
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 7 

for 1h at r.t. The reaction occurs with a slight color change from blue to violet. The solution was 

concentrated under reduced pressure and the desired product was precipitated by adding diethyl 

ether. Finally, the blue solid was separated by filtration, washed with water, diethyl ether and dried 

under vacuum to yield 0.038 g  (82% yield) of an air stable product characterized as 2(Br). 31P{1H} 

NMR (CD3CN, 121 MHz) δ= 18.1 (3P, s, 1JP-W = 92.5 Hz). ESI-MS (CH3CN, 20 V) m/z: 1474.0 

[M+]. Anal. Calc. W3Cl3BrS4N3P3C42H48: C, 32.5; H, 3.1; N, 2.7.  Found: C, 32.8; H, 3.2; N, 3.0 %.  

 [W3S4F3(edpp)3 ]Br (3(Br)) This compound was prepared following the general procedure 

described for 2(Br) except that Bu4NF (0.030 g, 0.115 mmol) was used and reacted with 1(Br) (0.050 

g, 0.030 mmol). The air stable violet product (0.040 g, 89 % yield) was characterized as 3(Br). 

31P{1H} NMR (CD3CN, 121 MHz) δ= 18.3 (3P, d, 2JP-F = 50 Hz ). 19F{1H} NMR δ= -152.00 (3F, 

broad signal) ESI-MS (CH3CN, 20 V) m/z: 1424.1 [M+]. Anal. Calc. W3F3BrS4N3P3C42H48: C, 33.5; 

H, 3.2; N, 2.8.  Found: C, 33.7; H, 3.5; N, 3.1 %. 

[W3S4(NCS)3(edpp)3]Br (4(Br)) This compound was prepared following the general procedure 

described for 2(Br) except that Bu4NSCN (0.060 g, 0.200 mmol) was used and reacted with edpp 

(0.050 g, 0.030 mmol). The air stable blue product (0.041 g, 84 % yield) was characterized as 4(Br). 

31P{1H} NMR (CD3CN, 121 MHz) δ= 17.8  (3P, s, 1JP-W = 96.2 Hz). ESI-MS (CH3CN, 20 V) m/z: 

1540.8 [M+]. Anal. Calc. W3BrS7N6P3C45H48: C, 33.3; H, 3.0; N, 5.2.  Found: C, 33.7; H, 3.2; N, 5.3 

%.  

X-ray data collection and structure refinement  

Suitable crystals for X-ray studies of the tetraphenylborate salts of 1+ were grown by slow vapor 

diffusion of diethyl ether into a sample solution in CH3CN. Suitable crystals for X-ray studies of the 

tetraphenylborate salts of 2+, 3+ and 4+ were grown by slow vapor diffusion of diethyl ether into a 

sample solution in CH2Cl2.  Replacement of the Br- ion was carried out by addition of an excess of 

Na(BPh4) to methanol solutions of [1-3](Br), resulting in precipitation of the desired 

tetraphenylborate salts of the 1+ to 3+ trinuclear cations. Anion exchange, Br- for PF6
-
, ion was 
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 8 

carried out by elution with a KP6 solution in acetone after absorption of a CH2Cl2 solution of 4[Br] 

in a silica gel column.  

X-ray diffraction experiments were carried out on a Agilent Supernova diffractometer 

equipped with an Atlas CCD detector using Mo-Kα radiation (λ = 0.71073 Å) for [1-3](BPh4) and 

Cu-Kα radiation (λ = 1.54184Å) for 42(PF6)2. No instrument or crystal instabilities were observed 

during data collection. Absorption corrections based on the multiscan method were applied.38,39 The 

structures were solved by direct methods in SHELXS-97 and refined by the full-matrix method 

based on F2 with the program SHELXL-97 using the OLEX software package.40,41 Details regarding 

the data collection and refinement parameters are listed in Table 1. 

The structure of 1(BPh4)·CH3CN·CH3CH2OCH2CH3 was refined in the triclinic P-1 space 

group. After location of the cluster, eight peaks on general positions remained in the difference 

Fourier map. These peaks were assigned to carbon, nitrogen and oxygen atoms from acetonitrile and 

diethylether solvent molecules and refined anisotropically. The structure of 2(BPh4)·CH2Cl2 was 

solved in the triclinic P-1 space group. Two out of the six carbon atoms of a phenyl substituent from 

an aminophosphine ligand shown disorder. These were all refined over  two positions with a 

constraint to the total occupancy of one. A disordered CH2Cl2 solvent molecule was located in the 

difference Fourier map where the carbon atom was modelled over two positions with a constraint to 

the total occupancy of one. The structure of 3(BPh4)·CH2Cl2 was refined in the triclinic P-1 space 

group. As in the previous structure, the remaining peaks after location of the cluster and the anion 

were assigned to carbon and chlorine atoms from a CH2Cl2 solvent molecule and refined 

anisotropically. The structure of 42(PF6)2 was refined in the trigonal P31c space group and contains 

two independent clusters per asymmetric unit with the capping sulfur lying on a three fold axis. 

Disorder was observed on two out of the six carbon atoms of a phenyl substituent from an 

aminophosphine ligand which were refined over two positions. Disorder was also observed in one 

sulfur atom of the thiocyanate ligand which was also refined over two positions. These were all 

refined with a constraint to the total occupancy of one. In all cases, anisotropic displacement 

parameters were refined for all non-H atoms except for the disordered carbon atoms. The hydrogen 
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 9 

atoms bonded to carbon were included at their idealized positions and refined as riders with isotropic 

displacement parameters assigned as 1.2 times the Ueq value of the corresponding bonding partner. 

The structural figures were drawn using the Diamond visual crystal structure information system 

software.42 

 

Table 1. Crystallographic data for  [1-3](BPh4) and 42(PF6)2 
 cluster salts.  

 
Compound 
 

1(BPh4)·(CH3CN)· 

(CH3CH2OCH2CH3) 

2(BPh4)·(CH2Cl2) 3(BPh4)·(CH2Cl2) 42(PF6)2 

Empirical formula 
 

C72H71BBr3N4OP3S4W3 C67H66BCl5N3P3S4W3 C67H70BCl2F3N3P3S4W3 C90H66F12N12P8S14W6 

Formula weight 
 

2031.57 1873.99 1828.67 3343.25 

Crystal system 
 

Triclinic Triclinic Triclinic   Trigonal 

a, Å 
 

14.1815(5) 13.6639(3) 14.2869(3) 16.3126(3) 

b, Å 
 

14.9361(5) 15.5155(3) 15.6823(3) 16.3126(3) 

c, Å 
 

20.2894(7) 18.3338(3) 17.6782(3) 27.3343(4)   

α, ο 101.274(3) 100.7043(14) 75.7547(14) 90.00 

β, º 
 

105.565(3) 100.8016(14) 71.0168(16)   90.00 

γ, ο 105.842(3) 108.1880(17) 65.3500(17) 120.00 

V, Å3 
 

3811.6(2)   3500.73(10) 3375.90(10) 6299.22(18) 

T, K 
 

199.95(10) 200.00(10) 199.95(10) 293(2)   

Space group 
 

P-1 P-1 P-1 P31c 

Z 
 

2 2 2 2 

µ(Mo Kα), mm-1 

 
 

6.304 5.337 5.424 --- 

µ(Cu Kα), mm-1 
 

--- --- ----- 13.481 

Reflections 
collected 
 

40721 58146 63675 36371 

Unique 
reflections/Rint 

 

13412/ 0.0452 13744/0.0300 11862/0.0430 8136/0.0687 

Goodness-of-fit 

(GOF) on F2 
 

1.073 1.132 1.068 1.134   

R1
[a] /wR2

[b] (all 
data)  

0.0417/ 0.0922 0.0429/0.0840 0.0302/0.0613 0.0485/0.1257   

Residual ρ/e A-3 
  

2.73/-0.89  
 

1.77/-1.76 1.62/-0.93 0.92/-0.58 

[a] ∑∑ −= 001 FFFR
c

 [b] ( )[ ] ( )[ ][ ] 2122
0

222
02 ∑ ∑−= FwFFw

c
wR  
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Kinetic Experiments 

The kinetic experiments were carried out with an Applied Photophysics SX-17MV stopped-flow 

spectrometer provided with a PDA1 photodiode array (PDA) detector. All experiments were carried 

out at 25.0 oC. The reactions of [W3S4X3(PN)3]Br (X= Br- (1+),Cl-(2+), F-(3+), NCS- (4+)) clusters  

(~2×10-4 M) (with different entering ligands (Cl-, Br-, F-, NCS-) have been studied using acetonitrile 

as solvent. We have used a range of concentrations between 8.3×10-3 – 0.05 M. Measurements were 

performed in the presence of ionic strength 0.05M. In each case a salt of halide (X- of complex) was 

used.  We found that the results were similar with or without added salt but the quality of fits was 

better if it was not present. In all cases the spectral changes were measured over a wide wavelength 

range and analyzed with the Specfit program43 using the kinetic models indicated in the 

corresponding section. 

DFT calculations 

The calculations have been conducted with the Becke hybrid density functional (B3LYP)44 method 

as implemented in the Gaussian 09 program suite.45 The double-ξ pseudo-orbital basis set LanL2DZ, 

in which W, H, C, N, P, S, F, Cl and Br are represented the relativistic core LanL2 potential of Los 

Alamos, was used. B3LYP/LanL2DZ has been proved to be a reliable tool for describing geometric, 

electronic structures and energetic profiles of M3S4 (M=Mo,W) clusters.16,46,47 The three Potential 

Energy Surfaces for the substitution of one of the bromides of 1+ by the entering ligands have been 

obtained in each case by constructing a grid varying the W-Br and W-X distances, and fully 

optimizing the remaining geometric parameters. In the three cases, the W-Br distance has been 

varyied from the bonding distance (2.72 Å) to 4.72 Å in 0.2 Å steps. On the other hand, the W-X 

distances have been increased 2 Å starting from the corresponding bonding distances (2.02 Å for W-

F; 2.55 Å for W-Cl and 2.04 Å for W-NCS) in 0.2 Å steps. Therefore, a total of 11 x 11 points, i. e., 

121 points, have been calculated to construct each Potential Energy Surface. The geometry 

optimizations have been first performed in gas phase without any symmetry constraint followed by 

analytical frequency calculations to confirm that a minimum or a transition state has been reached. 
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The nature of the species connected by a given transition state structure has been checked by 

calculating the Intrinsic Reaction Coordinate (IRC) pathway 48, that assures the Transition Structure 

(TS) connections to the reactant and product complexes following the transition vector downhill 

from the corresponding TS. Taking the calculated gas phase structures as starting points, we have 

also conducted geometry optimizations without any constraints by using the Polarizable Continuum 

Model (PCM) approach49,50, to include the acetonitrile solvent effect in the geometries and energies. 

We have considered electronic energies and Gibbs free energies for discussion. The latter have been 

obtained by means of frequency calculations at room temperature of the stationary points found. 

 

Results and Discussion  

 

Synthesis, molecular structure and reactivity  

Excision reaction of the {W3S7Br4}n polymeric phases with an excess of (2-

aminoethyl)diphenylphosphine (edpp), PPh2(CH2)2NH2, in acetonitrile in the presence of HBr (see 

eq. 1) affords only one among all possible isomers of formula  [W3S4Br3(edpp)3]
+, 1+, in a single 

synthetic step and good yields, ca. 60 %.  

{W3S7Br4}n + 6 PPh2(CH2)2NH2 (edpp) [W3S4Br3(edpp)3]Br + 3 SPPh2(CH2)2NH2    (1)
HBr

 

The substitutional reactivity of the W-Br bond in [W3S4Br3(edpp)3]
+ towards halide and 

pseudohalide (eq. 2) salts has allowed us to prepare and fully characterize also the fluoride, chloride 

and thiocyanate tungsten derivatives of formula  [W3S4X3(edpp)3]
+ (X=F, Cl, NCS) in high yields. 

[W3S4Br3(edpp)3]Br + 3 X- [W3S4X3(edpp)3]Br + 3 Br-                                            (2)

 The structures of cations [W3S4Br3(edpp)3]
+ (1+), [W3S4Cl3(edpp)3]

+ (2+), W3S4F3(edpp)3]
+
 

(3+) and [W3S4(NCS)3(edpp)3]
+ (4+)  have been determined by single crystal X-ray diffraction as 

their tetraphenylborate or hexafluorophosphate salts and they share identical structural features. The 
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 12 

four cations contain the incomplete cuboidal W3S4 cluster unit which results from the reduction of 

the disulfide bridges present in the starting bromide polymeric material to sulfides. In this unit, 

tungsten and sulphur atoms occupy adjacent vertices in a cube with a metal position missing, which 

results in an incomplete cubane-type structure. Figure 3 shows two ORTEP views of the 1+ cation. In 

4
+, the three outer thiocyanate ligands occupy the halide positions in 1+ to 3+, and coordinate the 

metal through the nitrogen atom. Packing of 4(PF6) occurs with two crystallographycally 

independent trimetallic cluster units and short NCS...HN contacts (2.420 Å) between the sulphur 

atom of a thiocyanate ligand on one cluster and the hydrogen atom of the amino group of the 

adjacent cluster. Table 2 contains a list of the most important averaged bond lengths for the 1+ to 4+ 

cations together with those reported for the [W3S4Br3(dmpe)3]
+ cation for comparative purposes.51 

The three metal atoms define an approximately equilateral triangle with W-W bond distances of 

2.7520[3] Å for 1+, 2.7495[3] Å for 2+, 2.7357[3] Å for 3+ 2.7507[11] Å for 4+, in agreement with 

the presence of a single metal-metal bond. The nature of W(µ3-S)(µ3-S)3 is such that the bridging 

and capping sulphur atoms occupy a set of facial positions around the pseudo octahedrally 

coordinated metal atoms leaving the three outer facial sites available for the phosphorous and 

nitrogen atoms of the aminophosphine and a site occupied by the halide ligand. Remarkably, as 

previously mentioned, only one isomer is formed with all three nitrogen atoms of the amino groups 

located trans to the bridging sulphur atoms, the three phosphorous atoms being placed trans to the 

capping sulphur. A similar situation is found in M3Cl4(H2O)2(PPh3)3 complexes that result from the 

substitution of the water molecules in acidic HCl solutions of the [M3S4(H2O)9]
4+ aquo ions by 

PPh3.
52 Kinetic studies by Sykes and coworkers evidence different labilities for the three outer metal 

positions present in the [M3S4(H2O)9]
4+ aquo ions with the two positions trans to the bridging sulfur 

being 105 times more labile than that trans to the capping sulfur.34 In the M3S4 system, the ligands 

harder atoms have a tendency to occupy the more labile positions so the nitrogen atom of the 

aminophosphine locates trans to the bridging sulfur. Therefore, nitrogen and halogen atoms 

coordinated to the same metal center are found on the same side of the trimetallic plane, as shown in 

Figure 3 (bottom) with X•••N distances of 3.021 Å for 1+,  3.015 Å for 2+, 2.723 for 3+ and 2.728 for 
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 13 

4
+. However, the shorter X•••H(-N)  distances in 1+ and 2+ correspond to X•••H interactions between 

halogen atoms and amino groups on adjacent metals with values ranging from 2.745 to 2.859 Å  for 

1
+ and  2.529 to 3.048  Å  for 2+ . In the case of fluorocomplex 3+ the above X•••H(-N) distances 

(2.469 to 2.829 Å) are comparable to X•••H(-N) interactions between halogen atoms and amino 

groups on the same metal center with values ranging from 2.464 to 2.673 Å. For the cluster cation 4+ 

the shorter X•••H(-N) distances correspond to interactions between nitrogen atoms (NCS- ligand) 

and amino groups on the same metal center with values ranging from 2.661 to 2.665 Å.  

      

 

                                          

Figure 3.  ORTEP representations of two different views of the 1+ cation (ellipsoids 50 % 

probability). In the view at top, the hydrogen atoms have been omitted for clarity. In the view at 

bottom, phenyl rings and hydrogen atoms, except those directly bonded to N(1), have been also 

omitted to emphasize the  halogen and H2-N orientations. 
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 14 

The solid state structure of complexes 1+- 4+ is preserved in solution as evidenced by their 

31P{1H} NMR spectra registered in CD3CN, which shows a single signal at 15.2 ppm for 1+, 18.1 

ppm for 2+  and 17.8 ppm for 4+, in agreement with the presence of three equivalent phosphorous 

nuclei. The 3+ phosphorous signal appears as a doublet centered at 18.3 (2JP-F = 50 Hz) ppm as a 

result of coupling between phosphorous and fluorine nuclei. The ESI mass spectra of the halide 

amoniphosphine complexes shows one peak centered  at 1607.9 m/z for 1+,  1474.0 m/z for 2+ , 

1424.1 m/z for 3+ and 1540.8 m/z for 4+ attributed to the pseudomolecular cations on the basis of the 

m/z value and its characteristic isotopic pattern. As for the family of ([M3Q4X3(diphosphine )3]
+ 

(M=Mo, W; Q= S,Se and X=F, Cl, Br and H) complexes, this spectrometric technique has been very 

useful for the characterization of the new aminophosphine cluster complexes. 

Reactivity studies show that substitution of the bromides in 1+ by Cl- and NCS- easily occurs 

at room temperature, which contrasts with earlier observations in the diphosphino W3S4 system, for 

which no reaction is observed.53 Only substitution of bromide by fluoride occurs for both the 

diphosphino and aminophosphino (L)  trimetallic  [W3S4Y3L3]
+ clusters.  

Table 2. Selected averaged bond distances (Å) for [1-3](BPh4), 4(PF6) and [W3S4Br3(dmpe)3](PF6). 

Length (Å)a [W3S4Br3(dmpe)3](PF6)
51

 1(BPh4) 2(BPh4) 3(BPh4) 4(PF6) 

W-W 2.759(2) 2.7520[3] 2.7495[3] 2.7357[3] 2.7507[11] 

W-µ3-S(1) 2.37(1) 2.3450[16] 2.3715[15] 2.3769[13] 2.371[3] 

W-µ-S(2)b 2.30(1) 2.3117[15] 2.3104[15] 2.3140[13] 2.315[3] 

W-µ-S(2)c 2.33(1) 2.3091[15] 2.3040[15] 2.3066[13] 2.298[3] 

W-P(1)d 2.51(1) 2.5306[16] 2.5408[17] 2.5264[14] 2.542[4] 

W-N - 2.286[5] 2.268[5] 2.267[4] 2.276[11] 

W-X (X=F, Cl, Br, 

NCS) 

2.641(4) 2.6401[7] 2.4947[16] 2.043[4] 2.114[10] 
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 15 

 a Standard deviations for averaged values are given in square brackets. b W-µ-S distance trans to W-

X bond. c W-µ-S distance trans to W-P ([W3S4Br3(dmpe)3]
+) or W-N ([1-3](BPh4)) bond. d Distance 

trans to the  W-(µ3-S) bond.         

The reactions of 1+ with halide and pseudohalide salts were monitored by ESI mass 

spectrometry and 31P{1H} NMR, and the sequential substitution of bromide by chloride, fluoride or 

thiocyanate ligands was observed. Thus, in the case of the reaction between 1+ and Cl-, the 

sequential substitution of the terminal ligands is demonstrated by the appearance of peaks at m/z: 

1563.7, 1517.8 and 1474.0 in the ESI-MS monitoring for [W3S4Br2Cl(edpp)3]
+
, [W3S4BrCl2(edpp)3]

+
 

and [W3S4Cl3(edpp)3]
+, respectively (Figure 4). Similar conclusions are obtained by monitoring the 

reaction with phosphorus NMR. The results are summarized in Figure 5 and they show that 

conversion of 1+ to 2+ occurs with formation of two reaction intermediates. However, whereas the 

spectra of the starting complex and the reaction product consist of a single signal (A and D, 

respectively, in Figure 5), the spectra of the intermediate contain three signals, labelled B for the first 

intermediate and C for the second, which indicates that the three edpp ligands are no longer 

equivalent in the [W3S4Br2Cl(edpp)3]
+ and [W3S4BrCl2(edpp)3]

+ intermediates. The facile 

substitution at room temperature of the bromide ligand in 1+ by other halides and pseudohalides is a 

distinctive feature of the W3S4 aminophosphino complexes in comparison with its diphosphino 

analogues.  

Quite similar results are also observed during the reaction of 1+ with F- and NCS-; the positions 

of the NMR signals are shown in Table 3. For the reaction with fluoride, the phosphorus spectra are 

complicated by the existence of coupling with the coordinated fluorides, which leads to splitting of 

the signals that hinder a detailed assignment of the signals for the different intermediates. In any 

case, a doublet was observed for the tri-substituted species with a P-F coupling constant of 50 Hz. 

Interestingly, the 19F{1H} spectrum shows a broad signal centered at -152 ppm,  and the coupling 

with the phosphorus nuclei could not be resolved even at low temperature. Broadening of the 

19F{1H}  NMR signal in fluorido complexes containing nitrogen donor ligands is not 
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unprecedented,54 and it could be associated in the present case to some interaction of coordinated 

fluoride with the neighboring amino groups. It must be also noted that, in addition to the signals in 

Table 3, the NMR spectra recorded at long reaction times usually reveal the appearance of a series of 

less intense signals at 30-40 ppm which probably correspond to some secondary or decomposition 

product. 

 

Figure 4. ESI-MS monitoring of the reaction between 1+ and Pr4NCl a) Initial time, b) After 3 min. 

c) after 1 h.  
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Figure 5. 31P {1H} NMR spectra of 1+ (A), I1 (B), I2 (C) and 2+ (D) in the sequential reaction with 

Pr4NCl in acetonitrile-d3. The spectra were obtained through the addition of successive aliquots of a 

solution of the chloride salt. 

Table 3 lists the 31P{1H} chemical shifts for the species formed in the reaction of 1+ with 

different incoming ligands and gives support to the formation of  two intermediates between 1+, with 

three W-Br bonds, and the reaction product, with three W-X bonds. For a given intermediate, the 

number of signals with chemical shifts close to that observed for 1+ (15.2 ppm) coincides with the 

number of Br ligands in the intermediate, i.e. two for the first intermediate and one for the second, 

which suggests that those signals correspond to the edpp ligands coordinated to the metal centres 

with unreacted W-Br bonds. In agreement, the remaining signals of the intermediates correspond to 

PN ligands coordinated to metal centres with W-X bonds and they appear at chemical shifts closer to 

that observed for the trisubstituted W-X reaction product. It is also interesting to note that the 

symmetry is recovered and the three edpp ligands become equivalent again once the reaction is 

completed with substitution at the third metal centre, which indicates that all the edpp ligands retain 

their original disposition, with the three P donors at the same site of the plane defined by the three 
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metal centres. From the mechanistic point of view, this indicates that the entering ligand approaches 

to the metal centre at the proximities of the W-Br bond, the entering ligand occupying finally the 

coordination site initially occupied by the leaving bromide. 

 Some experiments similar to those described above but using other starting complexes were 

also carried out. Those experiments showed that the 3+ fluorocomplex does not react with an excess 

of any of the other three entering ligands (Cl-, Br- or NCS-), which suggests that it is the most stable 

from the thermodynamic point of view. In agreement with that conclusion, both 2+ and 4+ were 

found to react with an excess of fluoride. More details are given below when commenting the kinetic 

results. 

 

Table 3. Chemical shifts of the 31P{1H} signals in ppm in CD3CN at  25.0 ° C for the species formed 

in the reaction of 1+ with different incoming ligands. 

X W3Br3 W3Br2X W3BrX2 W3X3 

Cl- 15.2 15.1, 15.4, 18.0 15.3, 17.9, 18.2 18.1 

NCS- (15.2, 15.4)[a], 18.0 (15.4)[a], 17.6, 18.1 17.8 

F- [b] [b] 18.3  

(2J F, P = 50 Hz) 

 

[a] These signals are overlapped with those of the starting material and the other intermediate. [b] It 

has not been possible to assign the signals corresponding to the reaction intermediates as broad 

unresolved signals are observed. 

 

The kinetics of substitution reactions 
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The kinetics of the reactions of [W3S4X3(edpp)3]Br (X= Br-, Cl-, F-, NCS-) clusters with an excess of 

the different entering ligands (Cl-, Br-, F-, NCS-) was studied in acetonitrile. In general, the spectral 

changes observed under pseudo first order conditions for the reactions in eq (3) show that conversion 

of the starting complex to the trisubstituted compound occurs within the time scale of the stopped-

flow technique, although in most cases there are additional slower changes that surely correspond to 

the secondary or decomposition process also detected in the ESI-MS and NMR studies. In agreement 

with the NMR observations commented above, the trifluoro cluster 3+ did not show substitution 

reactions with any of the other ligands because of its higher stability. The kinetics of interconversion 

between the tribromo and trichloro complexes (1+ and 2+) could not be studied because the spectral 

changes are very small and overlap with those for secondary processes, so that all attempts to 

analyze the kinetic data led to unreproducible results. 

[W3S4X3(edpp)3]Br + 3 Y- [W3S4Y3(edpp)3]Br + 3 X-                                            (3)

  As an example of the reactions studied, the spectral changes observed for the reaction of 1+ 

with F- are illustrated in Figure 6, and other cases are included in the Supporting Information. In 

general, the changes can be satisfactory fitted to a kinetic model with a single exponential (A→B), 

the fit leading to calculated spectra of A and B that agree well with those recorded for solutions of 

the corresponding 1+ to 4+ clusters. The observation of a single kinetic step for the overall process of 

sequential reaction at the three metal centres is quite common in kinetic studies on reactions of this 

kind of compounds, and it can be rationalized by considering that the process occurs with 

statistically-controlled kinetics. 4,16,33,35 Thus, if the three metal centres behave independently of each 

other, the rates of substitution of the three X monodentate ligands in Figure 2 will be controlled by 

the statistics and three consecutive kinetic steps with rate constants in 3:2:1 ratio must be expected. 

However, if in addition the three metal centres behave as independent chromophores, there is a  

simplification of rate law and the kinetic traces only show a single resolvable step. The requirements 

for this simplification of the kinetics have been discussed recently, as well as the reasons leading to 

possible deviations from the statistical behavior.55 
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Figure 6. Typical spectral changes for the reaction of 1+ with Bu4NF to yield 3+  in acetonitrile at 

25.0 ºC (cluster concentration = 5×10-5 M, [Bu4NF] = 0.025 M, experiment time = 0.4 seg). 

The dependence of the values of the observed rate constant kobs with respect to the concentration 

of the entering ligand is illustrated in Figures 7 and 8 for the reaction of 1+ with F- and NCS-. 

Whereas the data for the thiocyanate reaction can be satisfactorily fitted to a straight line (eq 4 with 

a = 0.16±0.01 M-1 s-1), the reaction with fluoride shows saturation kinetics (eq 5 with a = 

(2.6±0.6)×103 M-1s-1 and b = 12±9 M-1). However, equation 4 can be considered to be a 

simplification of eq 5. The effect of the leaving ligand on the kinetics of reaction was checked by 

studying the reaction of 1+ with fluoride or thiocyanate in the presence of bromide. As shown in 

Figures 7 and 8, in no case there is the deceleration expected for a dissociative mechanism. The 

results are in both cases quite close to those obtained in the absence of bromide, and actually the 

values of a and b above have been obtained by fitting together the data in the absence and in the 

presence of leaving ligand. For the reaction with fluoride, the reaction is even somewhat faster in the 

presence of added bromide; although these differences could be associated to competition between 

both anions to form the different productive and unproductive outer-sphere complexes commented 

below, the kinetic differences are not large and this hinders a detailed analysis.  In any case, these 

results clearly rule out a dissociative mechanism in which the leaving ligand dissociates before the 

entering ligand approaches the metal center.  
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kobs = a NCS−                                    (4)  

kobs =
a F− 

1+ b F− 
                               (5) 
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Figure 7. Plot showing the [F-] dependence of the observed rate constant for the reaction of 1+ with 

F- to form 3+. Triangles down correspond to reaction with added Br- and circles to no added Br-. In 

experiments with added Br-, the sum of the concentrations of both anions is 0.05 M.  The solid line 

corresponds to the fit of all the data using equation 5.  
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Figure 8. Plot showing the [NCS-] dependence of the observed rate constant for the reaction of 1+ 

with NCS- to form 4+. Triangles down correspond to reaction with added Br- and circles to no  added 

Br-. In experiments with added Br-, the sum of the concentrations of both anions is 0.05 M.  The 

solid line corresponds to the fit of data using equation 4. 
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The kinetic data for substitution of coordinated bromide reveal that changing the nature of 

the entering ligand leads to a variety of rate laws and to changes of several orders of magnitude in 

the numerical values of the rate constants. These findings can be explained with the mechanism 

depicted in eqs 6-8, in which there is a rapid preequilibrium that leads to formation of an outer-

sphere complex between the cluster and the entering ligand, which is followed by rate-determining 

ligand exchange.  

Br-M
+ + Y- ⇄  (Br-M+…Y-)               ; Kos        (6) 

(Br-M+…Y-)  → (Y-M+…Br-)          ; k2             (7) 

(Y-M+…Br-)  → Y-M+ + Br-               ; fast         (8) 

The rate law for this mechanism is given by eq (9), which has the same form that eq (5) with the 

equivalencies: a= k2Kos and b= Kos. Depending on the value of the Kos [Y
-] product, the rate law can 

be simplified to single first order dependence with respect to Y. From the experimental values of a 

and b, it can be concluded that the kinetic differences observed for these substitutions can be 

associated to changes in any of the k2 or Kos terms. 

 

[[[[ ]]]]
[[[[ ]]]] (9)                               

 1

 2

−−−−

−−−−

++++
====

YK

YKk
k

os

os
obs

 

The reaction of clusters 2+ and 4+ with F- showed results quite close to those observed for the 

analogous reaction of 1+, the values of a and b being now a= (2.0 ± 0.3)×103 M-1s-1 and b= 33 ± 8 

M-1 for substitution of Cl- and a= (2.1 ± 0.2)×104 M-1s-1 and b= 180 ± 12 M-1 for substitution of 

NCS-. On the other hand, the reaction of 2+ with NCS- showed very small spectral changes (see 

Supporting Information), their magnitude increasing slightly when the concentration of NCS- is 

increased. As a consequence of these small changes, the dependence of the observed rate constants 

with respect to the concentration of thiocyanate is not clear, although they can be considered to be 
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independent of the NCS-concentration with a value of kobs= 0.040 ± 0.007 s-1. These results suggest 

that the reaction occurs under conditions of reversibility, which is further supported by experiments 

with added Cl-, which indicated that the presence of the leaving ligand inhibits the reaction. In that 

case the values of kobs would include contributions of the rates on both directions and the 

dependence with respect to the concentration of leaving and entering ligands would not be well 

defined because of the small changes. Quite similar conclusions were obtained when studying the 

kinetics of the reaction in the reverse direction, i.e. substitution of thiocyanate by chloride. In that 

case there is no reaction upon addition of the leaving ligand (NCS-) but reaction is observed when 

Cl- is the only anion added to the reaction medium. Nevertheless, the small amplitude of the 

absorbance changes hinders again a satisfactory kinetic analysis. When taken together with the rest 

of the observations in the present paper, it can be concluded that the stability of the complexes 

follows the order 1+ < 2+ ≈ 4+ < 3+, i.e. the maximum stability is achieved with the F- ligand which is 

not substituted by an excess of any of the other ligands, and the less stable is the Br- complex, which 

is easily substituted by all the other anions. The chloride and NCS- complexes are placed 

intermediate between the other two halides and their stabilities are close to each other.  

From the kinetic point of view, the most striking observation is the rapidity of the reaction and the 

wide range of values observed for the rate constants, which span over several orders of magnitude. 

The dependence of the rate with the concentration of entering ligand and the lack of dependence 

with the concentration of leaving ligand can be interpreted by considering that substitutions have an 

associative character. Actually, we have recently found that ligand substitutions in this kind of 

cluster can go also through a particular associative mechanism in which the excess of electron 

density caused by attack by the entering ligand is compensated by reorganization of the cluster core, 

without dissociation of the leaving ligand (see Figure 9).4,17  The entering Y ligand coordinates to the 

metal centre without dissociation of the leaving X, the process being accompanied of structural 

changes in the cluster core. 
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Figure 9. Proposed structure for the intermediate formed in associative substitution of X by Y in 

M3S4 clusters. 

DFT calculations  

To gain insight into the intimate mechanism of these substitution reactions, DFT calculations were 

carried out using cluster 1+ as a starting model. The geometry of the cluster optimized at the 

B3LYP/lanl2dz level (see Supporting Information) compares well with that resolved by X-ray 

diffraction, the differences ranging in general from 1.2% to 5%. The study of the substitution 

processes has been carried out at a single metal center, an approach that has been successfully 

employed in other theoretical studies6,16,17. We use the prime symbol to designate the compounds 

resulting from this single-center substitution. For instance, 2+’ refers to the cluster resulting from the 

substitution of one of the bromide ligands of 1+ by a chloride ligand, i. e., the [W3S4Br2Cl(edpp)3]
+ 

cluster. 

The energy values calculated in acetonitrile solution for the different substitutions starting 

from cluster 1+ are included in Table 4, and they compare very well with the experimental results: 

the most stable compound is the fluoride complex while the less stable is the bromide adduct. 

Clusters containing Cl- and NCS- are close in energy. 

Table 4. Summary of the energies (∆E, kcal/mol) and Gibbs free energies (∆G, kcal/mol) calculated 

in acetonitrile solution for the different substitution reactions in cluster 1+.  

Reaction ∆E ∆G 
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1
+ + Cl- ⇌ 2+’ + Br- -11.2 -9.3 

1
+ + F- ⇌ 3+’ + Br-  -48.1 -45.5 

1
+ + NCS- ⇌ 4+’ + Br- -15.2 -9.8 

 

The next step was to construct potential energy surfaces (PES) for the substitution of one of 

the bromides by the different Y- entering ligands: Cl-, F- and NCS-. As kinetic data rule out a 

limiting dissociative mechanism in which Br- leaves the coordination site before approach of the 

entering ligand, (1+, Y-) adducts with Y- approaching to one of the W centers at the proximities of 

the W-Br bond were used as starting point for modelling the potential energy surface corresponding 

to the substitution process. This approach is also based on the NMR observations indicating that the 

entering ligand approaches the metal center in the same direction than the leaving ligand. The final 

point in those calculations was the adduct that results from Br- release from 1+ to afford 2+’, 3+’ or 

4
+
’. The calculated surfaces are shown in Figure 10 and indicate a rich mechanistic chemistry for 

these substitutions.  

In the case of fluoride as entering ligand (Figure 10a), an associative interchange of the 

ligands is predicted for the bromide substitution: the minimum energy path (MEP) from the left 

(reactants) to the right (products) corners of the PES begins with a shortening of the W-F distance 

without concomitant enlarging of the W-Br distance. The point of maximum energy of the MEP 

shows W-F and W-Br distances of 2.82 and 2.92 Å respectively, and it was used as the starting point 

for calculating the corresponding transition state (TS), whose geometry is depicted in Figure 11a. 

The W-F distance is now 2.92 Å, slightly longer than the one predicted from the PES, and the W-Br 

distance is only 2.77 Å at the TS, which is essentially the same than the W-Br distances in the other 

two metallic centers (2.75 and 2.77 Å). Hence, the associative character of the ligand exchange is 

confirmed and even strengthened when the true TS is found. The geometry of the TS shows that the 

bond distances between W and both the capping S and the bridging S trans to the NH2 group 

essentially remain unchanged upon addition of the fluoride, while the W-(µ-S) distance trans to the 
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leaving Br increases from 2.36-2.38 Å to 2.48 Å. Thus, it appears that the excess of electron density 

introduced by the entering ligand is accommodated by weakening the trans W-S bond. Intrinsic 

reaction coordinate (IRC) calculations from the TS led to adducts whose optimized structures are 

shown in Figure 12. Those structures indicate the formation of outer sphere complexes between the 

cluster and the anion, in agreement with previous reports on related systems.56 The stability of the 

different outer-sphere complexes can be estimated from the relative energy values, listed in Table 5, 

with regard to those of the separated ions. In general, free energies are close to zero, except for the 

(1+, F-) adduct (see Figure 12), which is significantly more stable than the other outer-sphere 

complexes. A detailed inspection of the geometry reveals that F- approaches the cluster at the 

proximities of the amino group of the edpp ligand coordinated to the adjacent W, in such a way that 

there is a strong interaction with one of the H atoms (H···F distance of 1.02 Å), that is almost 

extracted from the edpp ligand. In the other outer-sphere complex, (3+, Br-), the anion also interacts 

with one hydrogen of an amino group but the interaction is much weaker (H···Br distance of c.a. 2 

Å). The importance of the H···F interaction is also evident in the corresponding transition state 

(Figure 11a), which shows an H···F distance of 1.37 Å that clearly suggests that the entering of 

fluoride is assisted by the hydrogen atom of the amino moiety of the vicinal edpp. 

  

(a) 

(W-Br,F) (W-F,Br) 
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(b) 

 

(c) 

Figure 10. Potential Energy Surfaces for the substitution of one of the Br- of 1+ by the different 

entering ligands Y-. The absolute energy (hartrees/particle) is depicted as a function of the W-Br and 

W-Y distances (Å). (a), Y-=F-; (b), Y-=Cl-; (c), Y-=NCS-. The surfaces have been depicted in such a 

way that 1+ plus Y- is always located on the left corner, while 3+’, 2+’ or 4+’ (a, b and c, respectively) 

plus Br- are always located on the right corners, as indicated. The minimum energy paths have been 

sketched (red lines, associative pathways; blue lines, dissociative pathways). 

(W-Br,Cl) (W-Cl,Br) 

(W-Br,NCS) (W-NCS,Br) 
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                            (a)               (b) 

   

                                                       (c)               (d) 

 

Figure 11. The transitions states found for substitution of coordinated bromide in 1+: (a) TS for the 

bromide exchange by fluoride; (b) TS for the associative interchange pathway for the bromide 

exchange by chloride; (c) TS for the dissociative interchange pathway for the bromide exchange by 

chloride; and (d) TS for the bromide exchange by thiocyanate. The dashed lines connect the leaving 

Br and the entering ligand with the metal center. The phenyl groups of the edpp ligands have been 

substituted by violet spheres for clarity. 

 

   

(1
+
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Figure 12. Optimized geometries for outer-sphere complexes formed by clusters 1+ and 3+ with the 

anions: (1+, F-) and (3+, Br-) represent the outer-sphere complexes participating in the substitution of 

Br- by F- through the corresponding pathway in Figure 10a. The dashed lines indicate short contacts 

and/or long-range interactions. Outer-sphere complexes with subscripts B or C correspond to 

alternative structures unproductive for substitution. The phenyl groups of the edpp ligands have also 

been omitted for clarity. 

The energies in Table 5 anticipate that in solution the equilibrium between the free cluster 

and the outer-sphere complex, would be displaced towards the latter species when the entering 

ligand is F- but to the free cluster for other ligands. However, it must be noted that the outer-sphere 

complexes commented above correspond to Y- approaching the W center in a particular orientation 

that favors the substitution process, but other orientations are also possible for the entering anions, as 

experimentally found for related systems.56 As outer-sphere complexes with these alternative 

structures are usually unable to evolve to the substitution product, they would represent dead-end 

species that would simply compete with productive outer-sphere complexes and make reaction to 

slow down. Although the formation of these alternative outer-sphere complexes has not been 
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explored in detail, several possibilities have been analyzed as shown in Figure 12. Structures (1+, F-

)B and (3+’, Br-)B were obtained by approaching the uncoordinated anion to the cluster at the 

proximities of the three NH2 groups, and again the strong interaction of fluoride with one of the H 

atoms is revealed in the (1+, F-)B case. Structures (1+, F-)C and (3+’, Br-)C were obtained by 

approaching the anion at the proximities of the three bridging sulfurs, being the outer-sphere 

complex less stable in this case. The energy values (see Table 5) for various productive and 

unproductive outer-sphere complexes are similar in most cases. 

Table 5 also includes the values of ∆E# and ∆G# calculated in acetonitrile solution for the 

different substitutions. In all cases the values are expressed with respect to the corresponding outer-

sphere complex formed between the starting cluster and the entering ligand. The activation barrier 

calculated for substitution of Br- by F- by internal associative attack within the outer-sphere complex 

is moderate, and all stationary points in the reaction profile lie below the energy of starting reactants 

(see Supporting information) in agreement with the experimental observation of a rapid reaction. As 

the b term in equation 5 can be related to the stability of the outer sphere complex, the high stability 

calculated for the case of entering fluoride is also in agreement with the experimental observation of 

the rate law in equation 5 for substitutions with this entering anion; in contrast, the values of b for 

other anions would be smaller and the rate law would be simplified to equation 4. 

Table 5. Summary of the energies (∆E, kcal/mol) and Gibbs free energies (∆G, kcal/mol) calculated 

in acetonitrile solution for the formation of outer-sphere complexes, and activation parameters 

calculated for the different substitution reactions in cluster 1+. Outer-sphere complexes without 

subscript are those involved in substitution, whereas those labelled B and C correspond to alternative 

structures unproductive in the substitution reaction. 

Outer-sphere 
complex 

∆E a ∆G a ∆E# b ∆G# b 

(1+, Cl-) -8.8 2.2 17.1 c 16.5 c 

(1+, F-) -27.4 -21.4 16.9 21.3 
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(1+, NCS-) -8.4 2.8 14.8 16.2 

(2+’, Br-) -7.3 0.0   

(3+’, Br-) -7.0 -0.9   

(4+’, Br-) -5.9 2.0   

(1+, F-)B
 -25.2 -19.7   

(1+, F-)C
 -16.4 -4.5   

(3+’, Br-)B
 -6.4 -0.3   

(3+’, Br-)C -3.9 2.5   

 

a Relative to separated ions. b Relative to the corresponding outer-sphere complex. c These values 

correspond to the dissociative interchange pathway. The values for the associative interchange 

pathway are ∆E#= 30.3 kcal/mol and ∆G#= 28.7 kcal/mol. In the gas phase the energy differences 

between both pathways are smaller: ∆E#= 27.0 kcal/mol and ∆G#= 26.0 kcal/mol for the dissociative 

interchange, and ∆E#= 24.3 kcal/mol and ∆G#= 25.9 kcal/mol for the associative interchange. 

In the case of chloride as entering ligand, the PES (Figure 10b) reveals two possible 

pathways with close energy barriers. One of them corresponds to an associative interchange 

analogous to that described for fluoride as entering ligand, and the TS (Figure 11b) calculated from 

the geometry at the maximum energy point in this pathway shows W-Br and W-Cl distances of 3.38 

and 2.65 Å, respectively. Although the W-Br distance is now longer, the associative character of the 

pathway is maintained. In this case the entering of the chloride is not as clearly assisted as in the 

preceding case by one of the hydrogen atoms of the amino group of the vicinal edpp ligand, the H-Cl 

distance being now of 2.10 Å. The other pathway in the PES of Figure 10b corresponds to a 

dissociative interchange, the transition state (Figure 11c) showing now W-Br and W-Cl distances of 

4.51 and 3.81 Å, respectively. Both distances are much larger than those in the TS for the other 

pathway, so that a partially vacant coordination site can be considered to be generated, the process 

being accompanied by minor changes in the remaining bond distances. The activation barriers 

calculated in the gas phase for the two pathways are very close to each other, which suggest that 

reaction can go through both parallel pathways. However, significant differences are found when the 
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acetonitrile solvent is included in the calculations since the dissociative interchange turns out to be 

clearly preferred. This can be justified by taking into account that this mechanism implies a greater 

charge separation than the associative interchange. Thus, it appears that for the bromide-by-chloride 

exchange both mechanisms are feasible, but the polar acetonitrile solvent would favor the 

mechanism with greater charge separation. Unfortunately, the impossibility of obtaining kinetic data 

for this reaction hinders additional analysis. 

For the reaction with thiocyanate (Figure 10c), calculations were made with the entering 

ligand coordinating to the metal center through the N atom, as experimentally found. In this case a 

single pathway is evident in the PES, and optimization of the corresponding transition state (Figure 

11d) indicates W-Br and W-N distances of 4.08 and 3.86 Å, respectively. The TS Gibbs free energy 

is 19 kcal/mol higher than the starting reactants value (see Supporting Information), in agreement 

with the experimental observation of a slower reaction with thiocyanate compared with fluoride. The 

lower stability of the outer-sphere complex with entering thiocyanate is also in agreement with the 

observation of an experimental rate law with the form of equation 4. 

As a summary, the results of DFT calculations agree well with the experimental 

observations, both for thermodynamic and kinetic aspects. Thus, the energy values in Table 4 agree 

with the reactivity behavior observed, justifying important observations as the lack of reactivity of 

the fluoride-containing cluster with other anions and the order of stability observed (1+ < 2+ ≈ 4+ < 

3
+). With regard to the kinetics of reaction, the calculated reaction profiles are in all cases 

compatible with the experimental observation of reactions in the stopped-flow time scale, although 

with significantly different rate constants. Thus, the reaction of 1+ with F- is calculated to be faster 

than with NCS-, in agreement with the experiments. Moreover, the experimental rate laws correlate 

well with the stabilities calculated for the different outer-sphere complexes, so that reactions with 

fluoride occur with significant curvature of the kinetic plots (eq 5) while other reactions lack of this 

curvature.   

Conclusion 
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In conclusion, new trinuclear incomplete cubane-type W3S4 tungsten clusters bearing 

aminophosphine ligands have been synthesized for the first time by reacting easily available W3S7 

precursors with the corresponding ligand. Interestingly, only one of the possible isomers of 

[W3S4X3(edpp)3 ]
+ (X= F, Cl, Br, NCS) is formed in almost quantitative yields, and this geometry is 

maintained in substitution reactions of the ancillary X- ligands. In the structure, the nitrogen atoms of 

the amino group and the terminal halide atoms are located above the trimetallic plane and the 

phosphorous atoms are placed below it. These complexes extend the family of the phosphine 

cuboidal W3S4 clusters by including an amino group that may have a definite role on catalytic 

processes.  

Substitution of the ancillary X- ligand occurs readily when thermodynamically favoured, and 

the intermediates involved in the sequential reaction at the three metal centers have been identified 

by NMR and ESI-MS. However, stopped-flow experiments indicate that these processes occur in a 

single kinetic step, thus indicating that the kinetics is controlled by the statistics. In addition, the 

kinetic data reveal a variety of rate laws for the substitution processes depending on the nature of the 

starting cluster and the entering ligand, and the numerical values of the rate constants show 

differences of several orders of magnitude when varying the entering ligand. The whole set of data 

can be explained with a mechanism in which there is a rapid pre-equilibrium that leads to formation 

of an outer-sphere complex followed by rate-determining ligand exchange, in a process that can 

show a variety of behaviors according to the results of DFT calculations. The theoretical work herein 

reported, including the solvent effects, nicely explains the experimental observations.  

Although the limited kinetic data available hinders a detailed analysis, it appears evident at 

this time that F- as entering ligand leads to very stable outer-sphere complexes (larger Kos) because 

of the interaction with the vicinal amino group, and this interaction assists the substitution process 

making it to go faster. However, as the calculations also justify the formation of unproductive outer-

sphere complexes with the entering ligand approaching to the cluster far from the entering ligand, 
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there is the possibility of an additional K’os [Y
-] term in the denominator that would contribute to 

changes in the experimental values of b, thus adding difficulties to the analysis. 

In any case, the experimental and theoretical studies described in the present paper provide a 

detailed kinetico-mechanistic description of substitutions of these clusters in non-aqueous media. 

Whereas the lack of protic equilibria simplifies the reaction mechanism with respect to those 

observed for water substitution by avoiding reaction pathways involving conjugated bases, the 

mechanistic behavior can be still quite rich because of the possibility of different reaction pathways 

that differ in the associative-dissociative character of the ligand interchange. 

Supporting Information  

CIF and listings of spectroscopic, spectrometric, and kinetic data for 1+ to 4+ complex salts. DFT 

computed energy profiles, cartesian coordinates, electronic and Gibbs free energies for the optimized 

structures, as well as imaginary frequencies for transition state structures, are reported. This material 

is available free of charge via the Internet at http://pubs.acs.org. 
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An aminophosphine ligand has been coordinated to the W3(µ3-S)(μ-S)3 cluster, the resulting 

compound undergoing easy substitution of the ancillary Br ligand; ESI-MS, NMR, stopped-flow and 

DFT information indicate an interchange substitution strongly dependent on the nature of the 

entering ligand. 
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