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ABSTRACT 

The solid-waste treatment plant of RECIPLASA is located in the municipality of Onda 

(Castellón province), which is an important agricultural area of Spain, with 

predominance of citrus crops. In this plant, all urban solid wastes from the town of 

Castellón (around 200.000 inhabitants) and other smaller towns as Almassora, 

Benicàssim, Betxí, Borriana, L’Alcora, Onda and Vila-Real are treated. In order to 

evaluate the potential impact of this plant on the surrounding water, both surface and 

groundwater, a comprehensive monitoring of organic pollutants has been carried out 

along 2011, 2012 and 2013. To this aim, an advanced analytical strategy was applied for 

wide-scope screening, consisting on the complementary use of liquid chromatography 

(LC) and gas chromatography (GC) coupled to mass spectrometry (MS) with 

quadrupole (Q)-time of flight analyser (TOF). A generic solid-phase extraction with 

Oasis HLB cartridges was applied prior to the chromatographic analysis. The screening 

included more than 1,500 organic pollutants as target compounds, such as pesticides, 

pharmaceuticals, veterinary drugs, drugs of abuse, UV-filters, polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl 

ethers (PBDEs), among others. Pesticides, mainly herbicides, were the compounds more 

frequently detected. Other compounds as antioxidants, cosmetics, drugs of abuse, 

PAHs, pharmaceuticals and UV filters, were also identified in the screening though at 

much lower frequency. 

Once the screening was made, quantitative analysis focused on the compounds more 

frequently detected was subsequently applied using LC coupled to tandem MS with 

triple quadrupole analyzer. In this way, up to 24 pesticides and transformation products 

(TPs), 7 pharmaceuticals, one drug of abuse and its metabolite could be quantified at 

sub-ppb concentrations. Along the three years of study, ten compounds were found at 
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concentrations higher than 0.1 g/L. Most of them were pesticides and TPs, a fact that 

illustrates that the main source of pollution seems to be the agricultural activities in this 

area.  
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1. INTRODUCTION 

Nowadays, a large number of organic micro-contaminants of very different chemical 

families and diverse physico-chemical characteristics can be found in the environment. 

Some of them are “classical” organic pollutants, as  pesticides, polycyclic aromatic 

hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), while others can be 

classified into the wide group named emerging contaminants as, for example, personal 

care products, pharmaceuticals, veterinary drugs, drugs of abuse, UV-filters, contrast 

agents for X-Ray, or polybrominated diphenyl ethers (PBDEs), as well as a huge 

number of transformation products (TP), which in many cases are still unknown 

(Moschet et al., 2014; Postigo and Barceló, 2015; Thomaidi et al., 2015). They can 

enter into the surface and groundwater from different pollution sources. Waste-water 

treatment plants (WWTPs) and solid-waste treatment plants (SWTPs) are between the 

potential sources of pollution as they treat large amount of wastes that commonly 

contain many organic pollutants (Bijlsma et al., 2012; Bijlsma et al., 2014; Du et al., 

2014; García et al., 2013; Huerta et al., 2015; Ibáñez et al., 2013). There is a need to 

perform reliable research on the large variety of organic compounds that can be present 

on treated water (e.g. in WWTPs) and on the surrounding water of SWTPs in order to 

protect water quality and avoid consumption or usage of contaminated water that can 

cause health  problems (Directive 2013/39/EU). In addition, emerging contaminants can 

be a potential risk to the environment and for human health safety, but they are not 

currently covered by water-quality regulations (Bletsou et al., 2015).  

Monitoring organic compounds that may be present in environmental water (commonly 

at very low concentrations, i.e. sub-g/L levels) relies on the use of advanced analytical 

methodology, able to detect, identify and quantify these compounds (Richardson, 2012; 

Richardson, 2014). To this aim, the hybridation of chromatography (both liquid 

chromatography (LC) and gas chromatography (GC)) to mass spectrometry (MS) is 
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needed. Thus, LC coupled to tandem mass spectrometry (MS/MS) is commonly used 

for determination of polar, non-volatile, analytes in aquatic environments (Gilart et al., 

2012;  Gracia-Lor et al., 2010; Gros et al., 2006; López-Serna et al., 2010; Marín et al., 

2009), while GC-MS/MS is highly appropriate for determination of non-polar and 

volatile contaminants (Hernández et al., 2013; Martínez-Moral and Tena, 2014; Pitarch 

et al., 2007; Zhang et al., 2015). However, using target quantitative methods in 

environmental analysis is not sufficient as only a limited number of analytes are 

included. The analyte-specific information acquired in LC-MS/MS methods implies that 

other compounds present in the sample are ignored, without the possibility of 

investigating other contaminants within the same injection . To have a more realistic 

overview of the water pollution it is necessary to apply wide-scope screening methods 

based on high resolution mass spectrometry (HRMS) able to detect and identify a large 

list of  contaminants (Agüera and Martínez–Bueno, 2013; Hernández et al., 2015a; 

Leendert et al., 2015).The main advantage of HRMS comes from the acquisition of 

accurate-mass full-spectra data with reasonable sensitivity, which makes possible to 

investigate an unlimited number of compounds with the possibility to perform a 

retrospective analysis of data acquired at any time without additional sample analysis 

(Agüera and Martínez-Bueno, 2013; Hernández et al., 2007; Ibáñez et al., 2008). Time-

of-flight (TOF) and Orbitrap analyzers have been used for LC-HRMS screening of 

compounds such as drugs of abuse, pharmaceuticals, pesticides and their TPs (Leendert 

et al., 2015; Ibáñez et al., 2008) in waters. Multiclass screening methods based on GC-

TOF MS have been also applied for the investigation of persistent organic pollutants 

(POPs) (Plaza-Bolaños et al., 2013; van Leeuwen and de Boer, 2008) and other non-

polar organic contaminants including several pesticides, PAHs, and octyl/nonyl phenols 

(Portolés et al., 2011; Portolés et al., 2014). The combined use of LC and GC, both 

coupled to HRMS, is nowadays the most powerful strategy to investigate large number 
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of contaminants with different polarities and volatilities. This approach has been 

presented as the closest to the “universal” screening pursued in environmental analytical 

chemistry (Hernández et al., 2015a; Pitarch et al., 2010).  

In order to have an appropriate evaluation of the water quality in relation to the presence 

of organic contaminants, not only a qualitative screening (i.e. detection and 

identification) is required, but also to determine the concentration levels of the most 

relevant compounds, i.e. a quantitative analysis. To this aim, strategies that combine 

HRMS-based screening and LC-MS/(MS) (Pitarch et al., 2010; Chen et al., 2014) or 

GC-MS/(MS) quantitative analysis (Guibal et al., 2015; Masiá et al., 2014; Pitarch et 

al., 2010; Vergeynst et al., 2014) are the most suited.  

The objective of this work was to perform a comprehensive research on the presence of 

a large number of organic micro-pollutants in surface and groundwater samples in order 

to evaluate the potential impact of a SWTP on the surrounding areas. Several water 

samples were collected from sampling points close to the SWTP along 3 years (in total, 

5 monitoring campaigns). An analytical strategy based on the complementary use of 

LC-QTOF MS and GC-(Q)TOF MS was applied for wide-scope screening (around 

1,500 compounds). Additionally, all samples were also analyzed by LC-MS/MS with 

triple quadrupole for quantitative determination of selected pesticides and TPs, drugs of 

abuse and pharmaceuticals.   
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2. EXPERIMENTAL 

2.1 Reagents  

See Supplementary Information 

2.2 Hydrogeological description of the sampling area 

In this work, water samples were collected in five campaigns between 2011 and 2013, 

along different periods: January 2011 (1
st
 campaign), April 2012 (2

nd
 campaign), 

December 2012 (3
rd

 campaign), May 2013 (4
th

 campaign) and December 2013 (5
th

 

campaign). 10 surface and 23 groundwater samples were in total collected from 

different locations in the environment of RECIPLASA, a SWTP sited in Onda 

(Castellón province, Spain). Figure S1 (Supplementary Information) shows an aerial 

map with the 9 sampling points, selected upstream and downstream of the flow 

direction of the Castellón aquifer. 

The landfill site is located on low permeability material (clay and sandstone, Weald 

Facies-lower Cretaceous) and next to a large outcrop of cretaceous and jurasic limestone 

with high permeability due to karstic process. These materials form a part of the 

groundwater body called Onda-Espadán, which is recharging from the Castellón 

aquifer. The Castellón is another groundwater body of detrital nature (Plio-Quaternary 

aquifer) and great hydrogeological interest. 

The sampling points corresponded to water from different origins. Samples collected 

from points 5 and 6 were surface water of the Mijares River, located around 1,600 m  

north-eastern of the SWTP. Upstream piezometer (point 1) and Reciplasa well (point 8) 

are located on low permeability material (Weald Facies) sited inside of the SWTP, 

located to 40 and 350 m, respectively, from the dumping/landfill body. Sabater I (point 

3) and Sabater II (point 4) are pumping  wells that pull out groundwater from the 
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cretaceous limestone about 1,000 m southern of the SWTP. Ntra. Sra Desamparados 

(point 2), San Martin de Porres (point 7) and El Salvador (point 9)  are pumping wells, 

which  pull out water from gravel aquifer and quaternary conglomerates of Castellón 

(Plio-Quaternary aquifer), over 2,000 m away from hypothetical  polluting source. 

The existence of hydraulic connection between the limestones (Cretaceous) and 

conglomerates (Plio-quaternary), as well as the preferred direction of groundwater flow 

(NNW-SSE), with an estimated hydraulic gradient of 1.25 ‰, gives a high degree of 

vulnerability to the aquifers studied. 

2.3 GC-MS instrumentation 

2.3.1 GC-(EI)TOF MS 

An Agilent 6890N GC system (Palo Alto, CA, USA) equipped with an Agilent 7683 

autosampler coupled to a time-of-flight mass spectrometer, GCT (Waters Corp., 

Milford, MA, USA), operating in EI mode, was used for GC-(EI)TOF MS screening. 

For more details, see Supplementary Information. 

2.3.2 GC-(APCI)QTOF MS 

An Agilent 7890A GC system, equipped with an Agilent 7693 autosampler, coupled to 

a quadrupole time of flight MS, Xevo G2 QTOF (Waters Corp.) operating with APCI 

source was used for GC-(APCI)QTOF MS screening. For more details, see 

Supplementary Information. 

2.4 LC-MS instrumentation 

2.4.1 UHPLC-(ESI)QTOF MS 

Two systems were used for LC-QTOF MS screening of water samples: 
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 An ultra-performance Acquity liquid chromatography (UPLC
TM

) (Waters Corp.) 

interfaced to a QTOF Premier mass spectrometer (Waters Corp.), using an 

orthogonal Z-spray electrospray (ESI) interface. 

 A Waters Acquity UPLC
TM

 interfaced to a hybrid quadrupole-orthogonal 

acceleration-TOF mass spectrometer Xevo G2 QTOF (Waters Corp.), using an 

orthogonal Z-spray- electrospray (ESI) interface.  

For additional details, see Supplementary Information. 

2.4.2 UHPLC-(ESI)QqQ MS/MS 

Two different triple quadrupole instruments (QqQ) operated in MS/MS mode were 

used: 

 Waters Acquity UPLC
TM

 (Waters Corp.), equipped with a quaternary pump 

system, interfaced to triple quadrupole mass spectrometer TQD
TM

 with 

orthogonal (ESI) Z-spray (Waters Corp.).  

 Waters Acquity UPLC
TM 

(Waters Corp.), equipped with a binary pump system,  

interfaced to triple quadrupole mass spectrometer Xevo TQ-S
TM

 (Waters Corp.) 

equipped with TWave devices and an orthogonal ESI source.  

For further details, see Supplementary Information. 

2.5 Sample treatment 

Water samples collected were stored in darkness at <-18ºC in polyethylene high-density 

bottles until analysis. All samples corresponding to the same campaign were analysed at 

the same time within a period of 60 days as maximum. Immediately before analysis, 

samples were thawed at room temperature. 

Sample extraction and pre-concentration was made by solid-phase extraction (SPE). For 

TOF MS screening, 250 mL of centrifuged water samples were passed by gravity 
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through Oasis HLB (200 mg, Waters) cartridges, previously conditioned with 5 mL of 

methanol and 5 mL of HPLC-grade water. After drying under vacuum, the analytes 

were eluted with 10 mL of methanol. The extract was divided into 2 aliquots (5 mL 

each). The 5 mL aliquot for GC screening was evaporated under a gentle nitrogen 

stream at 35ºC down to a volume of ca.1 mL. Then, 1 mL of ethyl acetate was added 

and evaporated again down to 250 µL (final volume). The pre-concentration factor 

along the sample procedure was 500. The 5 mL aliquot for LC-screening was 

evaporated to dryness under a gentle nitrogen stream at 35°C and reconstituted with 0.5 

mL of methanol:water (10:90, v/v). The pre-concentration factor was in this case 250. 

Finally, 1 and 50 µL of the extracts were injected in GC-(Q)TOF MS and UHPLC-

QTOF MS, respectively. 

A similar procedure was applied for LC-MS/MS QqQ quantitative analysis. Due to the 

higher sensitivity provided by QqQ instruments, only 100 mL of centrifuged water 

samples were passed through Oasis HLB (60 mg) cartridges, which were previously 

conditioned with 3 mL of acetone, 3 mL of methanol and 3 mL of HPLC-grade water. 

The analytes were eluted with 5 mL of methanol; the extract evaporated to dryness 

under a gentle nitrogen stream at 35°C and reconstituted with 0.5 mL of a mixture of 

methanol:water (10:90, v/v), and finally 1 µL of the extract was injected into the 

UHPLC-MS/MS QqQ.
 

2.6 Screening by (Q)TOF MS 

The presence of organic pollutants in the selected water samples was investigated by 

complementary screening using both GC-(Q)TOF MS and UHPLC-QTOF MS. The 

methodology by using QTOF MS with both LC and GC (Xevo G2, Waters) was 

previously validated in different types of water samples  using model compounds with 

satisfactory results (Hernández et al., 2015a). 
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Different instruments were used along the three years of this study depending on their 

availability and/or time of acquisition. Samples from the 1
st
, 2

nd
 and 3

th
 campaigns were 

analysed by combined use of GC-(EI)TOF MS (GCT, Waters) and UHPLC-QTOF MS 

(Premier, Waters). The latest samples, corresponding to 4
th

 and 5
th

 campaigns, were 

analysed by a newer generation instrumentation, GC-(APCI) QTOF MS and UHPLC-

QTOF MS (both Xevo G2, Waters). The main difference between this instrumentation 

and the previous one was the better sensitivity associated to the Xevo G2 analyser, and 

the use of APCI source in GC-QTOF MS instead of the GC-(EI)TOF MS used in 

previous campaigns. The better sensitivity of the later instruments might have some 

influence in the results, although we did not observe a relevant change in the trends in 

the last campaigns, revealing that the change in the instrumentation did not have 

significant influence on the objective of the study. 

The full-spectrum acquisition data generated at low and high collision energy (MS
E
 

mode) in the QTOF instrument were processed by ChromaLynx XS software (target 

way) in combination with a customised home-made compound database. It applies a 

“post-target” processing method by monitoring theoretical exact masses of the selected 

analytes and obtaining  the corresponding narrow-window eXtracted Ion Chromatogram 

(nw-XICs), commonly with 150 ppm. This allowed searching for the presence of a large 

number of contaminants (presence of  a chromatographic peak in the XIC generated). 

Full-spectrum acquisition data generated by GC-(EI)TOF were processed by 

TargetLynx software. A non-target research was also made in this case by using 

ChromaLynx XS software (non-target way) in combination with NIST commercial 

library.  

As can be seen in Table S1 of Supplementary Information, in the LC-QTOF 

screening a candidate list of 1,597 organic pollutants including pesticides and TPs, 
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pharmaceuticals and veterinary drugs, drugs of abuse and  UV-filters was used. 

Regarding GC-QTOF, the target list contained 525 compounds  including some GC-

amenable pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), pefluorinated compounds 

(PFCs), musks, antimicrobials and insect repellents. Table S1 also shows the number of 

compounds whose reference standards were available at the laboratory.  

Different approaches were applied in the screening as a function of the availability of 

reference standard of the compounds searched (Hernández et al., 2015a; Hernández et 

al., 2015b). Briefly, information about elemental composition, retention time (Rt), main 

fragment ions and adduct formation was included in the target list when the standard 

was available in order to facilitate and enhance the reliability in the 

identification/elucidation process. On the contrary, the only information available was 

the elemental composition of the parent compound (occasionally adducts) when the 

standard was unavailable. The protonated molecule and fragment ions were evaluated in 

both LE and HE functions, and also the characteristic isotope pattern when Cl or Br 

were present. With the accurate-mass full-spectrum data obtained, the compatibility of 

fragment ions with the chemical structure of the suspect compound was tested, and a 

tentative identification was feasible. The tentative identification was supported by 

MS/MS product ions reported in the literature for the suspect compound (either in exact 

or nominal mass). The final acquisition of the reference standard allowed to confirm the 

compounds tentatively identified, and then all information gathered on the new 

confirmed compound was included to update the database. 

In the case of GC-(APCI)QTOF MS analysis, both the molecular ion and the protonated 

molecule were included in the processing screening method. In GC-(EI)TOF MS 

analyses, a non-target screening was also performed using ChromaLynx (in non-target 
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way) to automatically process data. When a peak was found to satisfy user defined 

parameters the software displayed its deconvoluted mass spectrum, submitted it to an 

automatic library search routine (library match >70%) and performed an accurate mass 

confirmation for the up to five most intense ions to confirm/reject the finding (Portolés 

et al., 2014). 

2.7 Target quantitative analysis by LC-MS/MS QqQ 

Quantitative analysis was performed by UHPLC-MS/MS QqQ (Xevo TQD
TM 

for 

samples from 1
st
, 2

nd
 and 3

rd
 campaigns; TQ-S

TM
 for the 

 
4

th
 and 5

th
 campaigns). In total, 

the compounds investigated along the three years were 42 pesticides, 49 

pharmaceuticals and 11 drugs of abuse. The experimental conditions selected are shown 

in Table S2 of Supplementary Information, only for those compounds that were 

found in the samples analysed. A total of 33 organic compounds were quantified, 

including 24 pesticides and TPs, 7 pharmaceuticals and one drug of abuse (cocaine) and 

its major metabolite, benzoylecgonine. In order to allow the simultaneous quantification 

and reliable identification of the positive findings, two SRM transitions were acquired 

for every compound, with the exception of ibuprofen where only one transition was 

monitored due to its poor fragmentation. The better sensitivity of the TQS instrument 

allowed to reach limits of quantification (LOQ) notably lower than with the TQD 

instrument.  
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3. RESULTS AND DISCUSSION 

In this work the presence of organic contaminants in ground and surface water samples 

was investigated in order to evaluate the potential impact of the Reciplasa SWTP in the 

contamination of the surrounding area. This SWTP treats all the urban solid wastes and 

hospital wastes (groups I and II) from the town of Castellón and from other seven 

smaller towns of the province. The 100% of wastes (dangerous waste is not treated in 

the plant) are treated, and organic wastes are subjected to composting. The solid wastes 

treated by this plant correspond to a population of around 300.000 inhabitants. 

The focus of the research was on the detection and identification of the main 

contaminants (i.e. qualitative analysis) by using an efficient and wide-scope screening 

based on the combined use of two complementary techniques, GC-(Q)TOF MS and LC-

QTOF MS. Using both techniques, a high number of organic contaminants could be 

included in the screening, with very different polarities and volatilities (Hernández et 

al., 2015a). In addition, based on data obtained in the screening and on our previous 

experience (Pitarch et al., 2010), a quantitative UHPLC- MS/MS QqQ method was 

applied, for the determination of selected organic contaminants, mainly pesticides and 

TPs. 

The study was carried out from January 2011 to December 2013, collecting a total of 33 

water samples (10 surface and 23 groundwater samples). The above approach (initial 

screening by (Q)TOF MS followed by quantitative analysis by LC-MS/MS) was applied 

to the analysis of all samples investigated. All compounds detected and reported as 

positive findings were confirmed by the presence of the quantification ion/transition (Q, 

the most abundant ion/transition) and the confirmation ion/transition (q, qualifier 

ion/transition) together with  the accomplishment of Rt within ± 0.2 min deviation. 

Specifically, in case of QTOF data, the presence of the Q ion, at low energy (LE) 
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function, and of the q ion, at high energy (HE) function, were required, both with mass 

errors lower than 2 mDa. 

3.1 Screening analysis (GC-(Q)TOF MS and UHPLC-QTOF MS) 

Table 1 shows the frequency of detection for organic contaminants after the application 

of the screening in the water samples collected, using different (Q)TOF instruments 

depending on sampling period. Pesticides were by far the most commonly detected 

compounds, especially herbicides (belonging to the chloroacetanilide, phenoxyacetic, 

phenylurea, triazine and uracil families), fungicides (anilide, anilinopyrimidine, 

benzimidazole, conazole and thiazole) and insecticides (dimethylcarbamate, 

organophosphorus (OP) and pyridylmethylamine). All pesticides were confirmed in the 

samples using the corresponding reference standard.  

The highest number of findings corresponded to herbicides, especially triazines and 

their TPs. Up to 14 compounds from this group were identified, the most frequently 

being terbuthylazine (76% of the samples analysed) and two of its TPs, 2- hydroxy and 

desethyl terbuthylazine (64 and 56%, respectively). Simazine was also present in 51% 

of the samples analysed. Moreover, around 30 % of the samples contained other 

herbicides, such as atrazine and its TPs (DIA and DEA), bromacil, terbumeton and its 

TP terbumeton-desethyl. Among fungicides, seven compounds were identified, the most 

detected being carbendazim (27%) and metalaxyl and thiabendazol (18%). Regarding 

insecticides, five OPs were found but only in one sample.  

The frequent detection of pesticides can be explained by the fact that this is an 

important agricultural area of orange production, where the application of pesticides is 

quite common. The compounds detected in waters, mainly herbicides from the triazine 

group and their TPs, are commonly reported as contaminants of ground and surface 

waters in the literature (Carabias-Martínez et al., 2003; Hernández et al., 2008; 
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Hernández et al., 2013; Marín et al., 2009; Masiá et al., 2013). It should be noted that 

nine pesticides detected in the present study, bromacil, pyridaphenthion, terbacil, 

terbumeton and terbutryn (2002/2076/EC), simazine (2004/247/EC), atrazine 

(2004/248/EC), carbaril (2007/355/EC) and carbofuran (2007/416/EC) were banned in 

Spain at the time of sampling campaigns.                

Other compounds different than pesticides were also identified in the screening, as it 

can be seen in Table 1. These belonged to very different families, as antioxidants, 

cosmetics, drugs of abuse, insect repellents, musks, PAHs, pharmaceuticals, 

plasticizers, preservatives or UV filters. Most of these compounds were detected using a 

post-target approach on the basis of the home-made accurate-mass data base employed, 

but nine of them were found by a non-target approach by GC-(EI)-TOF MS in analyses 

of the 7 samples collected in the 1
st
 campaign (January 2011). Among them, BHT, 

myristate isopropyl and n-butyl, caffeine, naphthalene 2-methyl, 2,6-DIPN, N-BBSA 

and benzophenone, were detected in 3 or more out of the 7 samples analysed in that 

campaign (>43%). Four compounds were just tentatively identified on the basis of the 

information obtained, as their corresponding reference standards were not available in 

our laboratory (one insect repellent (DEET), one musk (tonalide) and two UV filters 

(EHC and octocrylene)). These suspect compounds were investigated in 12 samples (4
th

 

and 5
th

 campaigns, 2013), being tonalide and octocrylene the most frequently detected 

(50 and 42%, respectively). On the contrary, the great majority of compounds were 

detected by using a target screening approach, and their identity was confirmed with 

reference standards. The presence of  the pharmaceutical ibuprofen and two drugs of 

abuse, benzoylegonine and caffeine, could be examples of consumption of these 

compounds by the population and the fact that they can reach surface and ground waters 

not only from urban waste waters but also (although with minor extension) from 
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SWTPs. The detection of parabens was rather frequent as they are commonly used in 

cosmetic (personal care products) and pharmaceutical industries, as well as 

preservatives in chemical prescriptions. 

Figure 1 shows a summary of the different families of compounds found in water 

samples by using QTOF MS screening. As can be seen, (Figure 1A), pesticides 

represented 71% of the positive findings, being the rest of the families below 10%. 

Within the group of pesticides (Figure 1B), triazine herbicides were far the most 

frequent (72%). The rest of pesticide families raised percentages below 6%.  

As an example, Figure 2 illustrates the detection and identification of the uracil 

herbicide bromacil in San Martin de Porres groundwater (point 7, 5
th

 campaign) by 

UHPLC-QTOF MS. The protonated molecule as well as its sodium adduct were 

observed in the LE function, with mass errors lower than 2 ppm, at the expected 

retention time (7.5 min). Moreover, the combined spectrum of this chromatographic 

peak showed a typical one-bromine atom isotopic pattern, being therefore in accordance 

with the chemical structure of bromacil (C9H14N2O2Br). Its identity was supported by 

the presence of three m/z ions at the expected retention time in the HE function, with 

negligible mass errors. 

As regards GC-(APCI)-QTOF MS screening, Figure 3 shows a positive of 

chlorpyriphos ethyl in Sabater I groundwater (point 3, 5
th

 campaign). The protonated 

molecule was observed in the LE function, with a mass error of 2.0 ppm, at the expected 

retention time (22.37 min). Moreover, the combined spectrum showed a typical three-

chlorine atoms isotopic pattern in accordance with the chemical structure of 

chlorpyrifos (C9H11Cl3NO3PS). Finally, for the presence of 4 fragment ions (in HE 

function) led to the confirmation of the compound identity. 
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Figure S2 (in Supplementary Information) shows a summary of the analytes detected 

in every sample analyzed. The major number of detections corresponded to the 1
st
 and 

2
nd

 campaigns (January 2011 and April 2012, respectively), meanwhile the last 

sampling (December 2013) presented the lowest number of findings. As expected, one 

of the less polluted water samples corresponded to upstream piezometer (point 1). Also 

the Reciplasa well (point 8) sited inside the Solid-Waste Treatment Plant showed very 

little contamination. This might be explained by the low permeability (sandstones and 

clays of Weald Facies-lower Cretaceous), which reduced the probability of 

contaminants coming from leaching of landfill body to reach groundwater. Surface 

waters from Mijares river (points 5 and 6) also presented low contamination. The only 

exception was the sample collected at the Gauging-station (point 6) in the first 

campaign (January 2011) which contained the highest number of contaminants (19 

compounds), a fact that was not expected and might be explained by the heavy rains 

around the sampling period. The waters collected from Sabater I (point 3) and Sabater II 

(point 4) presented a notable number of contaminants especially during the first 

monitoring campaign. The strong karstic character of the carbonated materials 

(Cretaceous) from both points, could have facilitate the infiltration of those 

contaminants and then their discharged into Mijares river.  

Screening data illustrated that groundwater samples containing the highest number of 

pollutants (≥16 compounds) corresponded to Ntra. Sra. Desamparados, located into the 

Plio-Quaternary aquifer (sampling point 2, April 2012 and May 2013), and Sabater I, 

sited into Cretaceous aquifer (sampling point 3, December 2013). 

3.2 Quantitative analysis by UHPLC-QqQ MS/MS  

Surface and groundwater samples were also analysed by UHPLC-MS/MS QqQ (see 

experimental conditions in Table S2, Supplementary Information). The compounds 
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included in the quantitative method were mostly pesticides and TPs. Some 

pharmaceuticals and drugs of abuse were also considered, on the basis of our own data 

obtained in other studies performed in influent and effluent wastewaters and surface 

water samples. The acquisition of two MS/MS transitions per compound (Q for 

quantification, and q for confirmation) enabled the simultaneous quantification and 

reliable identification of the compounds detected. The quantification was carried out by 

using external standard calibration (between 0.1 and 100 ng/mL) with 10 isotope 

labelled internal standards. 

Table 2 shows the frequency of detection (% positive samples) for the contaminants 

found by application of the quantitative method. As regards pesticides, the results were 

mostly in agreement with the screening data, with triazine herbicides being the most 

frequent compounds. Terbuthylazine and its TPs, as well as the terbumeton desethyl TP 

presented high percentages of detection (around 90%). Atrazine (48%) and its TP DEA 

(42%) and simazine (45%) were also frequently found. Above a frequency of 50% were 

found the herbicide diuron (61%) and the fungicide metalaxyl (58%). With respect 

pharmaceuticals, carbamazepine and irbesartan were the most detected (42%). Cocaine 

and its major metabolite benzoylecgonine were in 43% and 32% of the samples 

analyzed, respectively.  

Only eight pesticides (from a total of 24 monitored) exceeded in some occasion 0.1 

µg/L, the maximum allowable concentration for pesticide in water for human 

consumption (Directive 2013/39/UE). These pesticides corresponded to four herbicides 

and two TPs (diuron, MCPA, simazine, terbuthylazine and its two TPs) and two 

insecticides (carbofuran and imidacloprid), most of them of widespread use in Castellón 

province. Among them, diuron and simazine are the only compounds included in the list 

of 45 priority substances (Directive 2013/39/UE) with maximum allowable 
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concentration of 1.8 and 4 µg/L, respectively, in surface waters. The two terbuthylazine 

TPs (desethyl and 2-hydroxy) were the most frequently detected at concentrations above 

0.1 g/L (33 and 25% of water samples analysed, respectively). Only in one case, the 

level of 0.5 g/L was surpassed, and it occurred for terbuthylazine, with a maximum 

concentration of 0.65 g/L (sample point 4, Sabater II, December 2013).  

Figures S3 and S4 (in Supplementary information) show the concentrations found for 

triazine herbicides and other pesticides in the water samples along the five sampling 

campaigns.  

Within the group of drugs of abuse and pharmaceuticals, only two compounds 

(benzoylecgonine and ibuprofen) exceeded 0.1 g/L in one sample, but always at 

concentrations below 0.25 g/L. 

It can be concluded that application of the screening analysis led to the detection of a 

notable number of organic contaminants; however, the subsequent quantitative analysis 

showed that only in a few cases the concentration level of 0.1 g/L was surpassed. 

An example of the quantitative analysis is shown in Figure 4. UHPLC-QqQ MS/MS 

chromatograms for some positives in the groundwater sample (Sabater II) collected in 

December 2013 are depicted. As can be seen, five triazine herbicides and three of its 

TPs, as well as a phenylurea herbicide, two insecticides and one fungicide were 

identified and quantified, at concentrations between 0.007 and 0.65 µg/L in sample 

Sabater II. This water sample was one of the most polluted, and up to 5 compounds 

(terbuthylazine and its two TPs, carbofuran and diuron) exceeded the 0.1 µg/L level. 
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4. CONCLUSIONS  

In this work, a powerful analytical approach based on the combined use of LC-QTOF 

MS and GC-(Q)TOF MS has been applied for the screening of around 1,500 organic 

contaminants in surface and groundwater. The samples were collected from the 

surrounding of a Solid-Waste Treatment Plant in order to evaluate its potential impact 

on the water quality. Subsequently, all samples were analysed by LC-MS/MS QqQ to 

quantify target analytes previously detected in the screening.  

The screening results for 33 water samples analysed demonstrated that pesticides were 

the most commonly detected compounds (71% of the compounds identified). Among 

them, triazine herbicides were the most detected. Organic contaminants, such as 

pharmaceuticals, drugs of abuse, antioxidants or UV filters were also found illustrating 

the potential of the TOF MS-based approach for screening purposes of water samples 

and its capacity to detect and identify a large variety of contaminants of very different 

physico-chemical characteristics.  

The subsequent LC-MS/MS QqQ quantitative analyses confirmed  the presence of 

compounds found in (Q)TOF screenings and allowed to determine their concentrations 

in the water samples. Terbuthylazine and its TPs (2-hydroxy and desethyl), as well as 

terbumeton desethyl were detected in nearly all samples analysed (around 90%). Only 

ten compounds (from 33 monitored) were found at concentrations occasionally above 

0.1 g/L. These were eight pesticides and TPs (carbofuran, diuron, imidaclorpid, 

MCPA, simazine, terbuthylazine, terbuthylazine 2-hydroxy and terbuthylazine desethyl) 

and also the cocaine metabolite (benzoylecgonine) and one pharmaceutical (ibuprofen).  

Terbuthylazine was the only compound that exceeded 0.5 g/L, with a maximum 

concentration of 0.65 g/L in a groundwater sample. 
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Data from this work show that pesticides were the main contaminants in ground and 

surface waters from the surrounding of the SWTP, both in terms of frequency of 

detection and concentration levels. This suggests that the use of phytosanitary products 

in this important citric-crops agricultural area is the main source of pollution of the 

aquatic environment, with triazines and their TPs being the most prominent 

contaminants reaching groundwater. Other contaminants, mainly pharmaceuticals, 

might have their origin in the SWTP, but the small number of detections and the low 

concentrations commonly found in the samples suggest that the potential impact of this 

plant in the aquatic environment is not much relevant at present. In any case, it is 

recommend to continue this type of monitoring in the near future to ensure the water 

quality of the area.  
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FIGURE CAPTIONS 

Figure 1. Percentages of positive findings for (A) the different families of compounds, 

and (B) the different families of pesticides, detected in water samples by screenings 

using GC-(Q)TOF MS and UHPLC-QTOF MS.  

Figure 2. Positive finding of bromacil after UHPLC-QTOF MS screening to 

groundwater sample San Martin de Porres (December 2013). a) LE (low energy) and 

HE (high energy) TOF mass spectra for the chromatographic peak at 7.53 min (see the 

bromine pattern). Elemental composition and mass errors in mDa are also shown. (b) 

Extracted Ion Chromatograms (XICs) at 150 ppm mass window for [M+H]
+
 and 

[M+Na]
+
 in LE function and its main fragment in HE function.  

Figure 3. Positive finding of chlorpyriphos ethyl after GC-QTOF MS screening to 

groundwater sample Sabater I (December 2013). a) LE (low energy) and HE (high 

energy) TOF mass spectra for the chromatographic peak at 22.39 min (see the chlorine 

pattern). Elemental composition and mass errors in mDa are shown. (b) Extracted Ion 

Chromatograms (XICs) at 150 ppm mass window for [M+H]
+
 in LE function and the 

main fragments in HE function.  

Figure 4. UHPLC-QqQ MS/MS chromatograms that illustrate several compounds 

found in Sabater II groundwater sample (point 4, December 2013). Only the 

quantification transition (Q) is shown for every analyte. 

  

 

 



31 

 

Pesticides
71%

Preservatives
8%

PAHs
4%

UV filters
4%

Pharmaceuticals
4%

Cosmetics
3%

Antioxidants
2%

Musks
2%

Others
2%

(A)
 

FUNG 
anilinopyrimidine

1%

FUNG conazole
1%

FUNG unclassified
2%

FUNG anilide
3%

FUNG thiazole
3%

HERB phenylurea
3%

HERB triazine
72%

FUNG 
benzimidazole

4%

HERB uracil
6%

INS 
dimethylcarbamate

1%

INS OP
3%

INS 
pyridylmethylamine

1%

(B)
 

Figure 1 

 



32 

 

BROMACIL

283.0045

261.0237

[M+H]+

C9H14N2O2Br

-0,8 ppm

[M+Na]+

C9H13N2O2BrNa

C9H14N2O2
81Br

C5H6N2O2Br

-2,9 ppmC4H5NOBr

0 ppm

161,9954

C5H3NO2Br

-3,7 ppm

187,9350

C9H13N2O2
81BrNa

(a) (b)

HE

LE

LE

LE

HE

HE

HE

 

Figure 2 

m/z
50 75 100 125 150 175 200 225 250 275 300 325 350 375

%

0

100

m/z
50 75 100 125 150 175 200 225 250 275 300 325 350 375

%

0

100

RECIP015 1434 (22.369) Cm (1434:1435-(1437:1452+1422:1432)) 2: TOF MS AP+ 
2.33e396.9512

199.9256

124.9801

215.8993
323.9048 349.9356

RECIP015 1435 (22.376) Cm (1434:1435-(1437:1455+1423:1433)) 1: TOF MS AP+ 
1.09e4349.9334

353.9265
CHLORPYRIPHOS 

ETHYL

C9H11Cl3NO3PS 

C5H3Cl3NO

2.5 ppmH2O2PS

-1.0 ppm

H4O3PS

-3.5 ppm

P
O

O

O

SN

Cl

Cl

Cl

[M+H]+

2.0 ppm

HE

LE

Time
22.00 23.00 24.00

%

0

100

22.00 23.00 24.00

%

0

100

22.00 23.00 24.00

%

0

100

22.00 23.00 24.00

%

0

100

22.00 23.00 24.00

%

0

100

22.00 23.00 24.00

%
0

100

RECIP015 Sm (Mn, 1x1) 2: TOF MS AP+ 
96.951 150PPM

1.38e3

22.37

RECIP015 Sm (Mn, 1x1) 2: TOF MS AP+ 
114.962 150PPM

313

22.37

22.13

RECIP015 Sm (Mn, 1x1) 2: TOF MS AP+ 
124.983 150PPM

509

22.37

22.10

RECIP015 Sm (Mn, 1x1) 2: TOF MS AP+ 
197.928 150PPM

1.10e3

22.37

RECIP015 Sm (Mn, 1x1) 2: TOF MS AP+ 
199.925 150PPM

1.03e3

22.37

RECIP015 Sm (Mn, 1x1) 1: TOF MS AP+ 
349.934 150PPM

7.06e3

22.38

LE

HE

HE

HE

HE

HE

197,9285

124.9821

C2H6O2SP

4.0 ppm

114.9615

(a) (b)
 

Figure 3 



33 

 

Sabater II 131213-2

Time
3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

3.00 3.50 4.00 4.50

%

0

100

Rec_A038 Sm (Mn, 2x3) 5: MRM of 2 Channels ES+ 
198.3 > 142.2 (DesetTerbumetone)

1.65e7
Area

2.78
1346681

Rec_A038 Sm (Mn, 2x3) 7: MRM of 5 Channels ES+ 
202.2 > 132.2 (Simazina)

1.36e6
Area

3.15
109792

Rec_A038 Sm (Mn, 2x3) 6: MRM of 3 Channels ES+ 
202.2 > 145.9 (DesetTerbutilazina)

1.09e7
Area

3.31
883862

3.89
68136

Rec_A038 Sm (Mn, 2x3) 8: MRM of 4 Channels ES+ 
216.1 > 174.1 (Atrazina)

7.00e5
Area

3.56
52473

Rec_A038 Sm (Mn, 2x3) 12: MRM of 5 Channels ES+ 
280.1 > 220.1 (Metalaxyl)

1.23e7
Area

3.62
1037283

Rec_A038 Sm (Mn, 2x3) 9: MRM of 7 Channels ES+ 
226 > 170.2 (Terbumeton)

1.44e7
Area

3.47
1171745

Rec_A038 Sm (Mn, 2x3) 10: MRM of 6 Channels ES+ 
230.2 > 174.1 (Terbutilazina)

1.24e8
Area

3.96
12087993

4.15
294719

Sabater II 131213-2

Time
2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

Rec_A095 Sm (Mn, 2x3) 5: MRM of 4 Channels ES+ 
212.2 > 128.1 (2-OH-Tbza)

1.23e6
Area

2.18
83063

Rec_A095 Sm (Mn, 2x3) 9: MRM of 3 Channels ES+ 
239.2 > 182.2 (Pirimicarb)

3.64e6
Area

3.10
286652

Rec_A095 Sm (Mn, 2x3) 6: MRM of 3 Channels ES+ 
222.2 > 165.3 (Carbofuran)

4.12e7
Area

3.19
3467336

Rec_A095 Sm (Mn, 2x3) 7: MRM of 3 Channels ES+ 
233.1 > 72.2 (Diuron)

6.30e6
Area

3.66
554506

Rec_A095 Sm (Mn, 2x3) 10: MRM of 4 Channels ES+ 
242.1 > 91.2 (Terbutryn)

1.23e6
Area

Terbumeton desethyl

0.055 µg/L

Simazine

0.050 µg/L

Atrazine

0.007 µg/L

Metalaxyl

0.092 µg/L

Terbumeton

0.059 µg/L

Terbuthylazine

0.65 µg/L

Terbuthylazine 2-hydroxy

0.39 µg/L

Pirimicarb

0.038 µg/L

Carbofuran

0.38 µg/L

Diuron

0.24 µg/L

Terbutryn

0.015 µg/L

Terbuthylazine desethyl

0.34 µg/L

 

Figure 4 



34 

 

Table 1. Positive samples obtained after the application of (Q)TOF screening to water 

samples collected from the surrounding of a SWTP between January 2011 and 

December 2013.  

FUNG: Fungicide; HERB: Herbicide; INS: Insecticide; OP: Organophosphorus; PAH: 

Polycyclic aromatic hydrocarbon; UV: Ultraviolet 

 
 

Family Compound 

Positive 

samples 

(%) 

FUNG unclassified 

 
2-Phenylphenol 

b,d
 12 

HERB triazine Atrazine 
a,b,d

 33 

HERB triazine Atrazine 2-hydroxy 
a
 15 

HERB triazine Atrazine deisopropyl (DIA) 
a,b,d

 30 

HERB triazine Atrazine desethyl (DEA) 
a,b,

 24 

HERB uracil Bromacil 
a
 27 

FUNG benzimidazole 

bebebenzimidazdimethylc

arbamate 

Carbendazim 
a
 27 

INS dimethylcarbamate Carbofuran 
a,d

 3 

INS OP Chlorpyriphos ethyl 
a,b,d

 3 

INS OP Chlorpyriphos methyl 
a,b,d

 3 

INS OP Coumaphos 
a,b,d

 3 

INS OP Diazinon 
a,b,d

 3 

INS OP Dimethoate 
a,b,d

 3 

HERB phenylurea Diuron 
a
 21 

FUNG conazole Imazalil 
a,b,d

 6 

INS pyridylmethylamine Imidacloprid 
a
 9 

FUNG anilide Metalaxyl 
a,b,d

 18 

INS dimethylcarbamate Pirimicarb 
a,b,d

 3 

INS OP Pirimiphos methyl 
a,b,d

 3 

FUNG anilinopyrimidine Pyrimethanil 
a,d

 8 

HERB triazine Simazine 
a,b,d

 51 

HERB triazine Simazine 2-hydroxy 
a
 12 

FUNG conazole Tebuconazole 
a,b,d

 3 

HERB uracil Terbacil 
a,b,d

 9 

HERB triazine Terbumeton 
a,b,d

 33 

HERB triazine Terbumeton desethyl 
a,b,d

 33 

HERB triazine Terbuthylazine 
a,b,d

 76 

HERB triazine Terbuthylazine 2-hydroxy 
a
 64 

HERB triazine Terbuthylazine desethyl 
a,b,d

 56 

HERB triazine Terbuthylazine desethyl 2-hydroxy 
a
 6 

HERB triazine Terbutryn 
a,b,d

 15 

HERB triazine Terbutryn desethyl 
a
 3 

FUNG thiazole Thiabendazol 
a,b,d

 18 

Antioxidant BHT 
c
 57 

Antioxidant BHT-CHO 
c
 29 

Cosmetic Myristate isopropyl 
c
 71 

Cosmetic Myristate n-butyl 
c
 43 

Drugs of abuse Benzoylecgonine
a
 3 

Drugs of abuse Caffeine 
c
 43 

Insect repellent N,N-Diethyl-meta-toluamide (DEET) 
d*

 8 
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Musk Tonalide 
d*

 50 

PAH Naphtalene 
b,d

 18 

PAH Napthalene 2-methyl 
c
 100 

Pharmaceutical Ibuprofen
 a
 3 

Plant growth regulators Naphthalene 2,6-diisopropyl (2,6-DIPN) 
c
 57 

Plasticizer N-Butyl benzene sulphonamide (N-BBSA) 
c
 86 

Preservative Buthylparaben 
a
 15 

Preservative Ethylparaben 
a
 12 

Preservative Propylparaben 
a
 21 

Preservative Methylparaben 
a
 21 

UV filter Benzophenone 
c
 71 

UV filter Ethylhexyl methoxycinnamate (EHC) 
d*

 17 

UV filter Octocrylene 
d*

 42 
a 
Compounds analyzed by UHPLC-QTOF MS (n=33) 

a* 
Compounds analyzed by UHPLC-QTOF MS (suspect, reference standard not available) 

(n=33) 
b
 Compounds analyzed by GC-TOF MS (n=21) 

c 
Compounds analyzed by GC-TOF MS (non-target) (n=7) 

d 
Compounds analyzed by GC-QTOF MS (n=12) 

d* 
Compounds analyzed by GC-QTOF MS (suspect, reference standard not available) (n=12) 
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Table 2. Results obtained for compounds quantified from analysis by UHPLC-MS/MS QqQ 

of ground and surface water samples collected from the surrounding of a SWTP between 

January 2011 and December 2013 (total number of samples 33) 
 

Family Compound 
Positive samples 

(%) 

Positive 

samples  

> 0.1 µg/L 

(%) 

Maximum  

level found  

(µg/L) 

HERB triazine Atrazine 48 0 0.019 

HERB triazine Atrazine deisopropyl (DIA)
  a

 8 0 0.031 

HERB triazine Atrazine desethyl (DEA)
  a

 42 0 0.092 

HERB uracil Bromacil 
b
 14 0 <0.025 

INS carbamate Carbaril 15 0 <0.025 

INS dimethylcarbamate Carbendazim 
b
 33 0 0.04 

INS dimethylcarbamate Carbofuran 36 6 0.38 

HERB phenylurea Diuron 61 3 0.24 

FUNG conazole Imazalil 0 0 _ 

INS pyridylmethylamine Imidacloprid 24 3 0.4 

HERB phenylurea Isoproturon 39 0 0.001 

HERB phenoxyacetic MCPA 
b
 14 10 0.11 

FUNG anilide Metalaxyl 58 0 0.092 

HERB chloroacetanilide Metolachlor 6 0 <0.025 

INS dimethylcarbamate Pirimicarb 30 0 0.038 

INS OP Pyridaphenthion 3 0 <0.025 

HERB triazine Simazine 45 3 0.11 

HERB uracil Terbacil 29 0 <0.025 

HERB triazine Terbumeton 36 0 0.059 

HERB triazine Terbumeton desethyl 92 0 0.086 

HERB triazine Terbuthylazine 91 6 0.65 

HERB triazine Terbuthylazine 2-hydroxy 
a
 92 25 0.39 

HERB triazine Terbuthylazine desethyl 
a
 92 33 0.34 

HERB triazine Terbutryn 21 0 0.03 

FUNG thiazole Thiabendazol 15 0 <0.025 

Drugs of abuse Benzoylecgonine 
c
 32 5 0.17 

Drugs of abuse Cocaine 
d
 43 0 <0.025 

Pharmaceutical Carbamazepine 
a
 42 0 0.001 

Pharmaceutical Clarithromycin 
d
 29 0 <0.025 

Pharmaceutical Erithromycin 
d
 14 0 <0.025 

Pharmaceutical Ibuprofen 
d
 14 14 0.23 

Pharmaceutical Irbesartan 
a
 42 0 <0.0004 

Pharmaceutical Valsartan 
a
 33 0 <0.006 

Pharmaceutical Acetaminophen 
d
 29 0 0.054 

a 
n= 12 samples 

b 
n= 21 samples 

c 
n= 19 samples 

d 
n= 7 samples 
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2. EXPERIMENTAL 

2.1 Reagents  

Reference standards of organic contaminants were purchased from Dr. Ehrenstorfer 

(Augsburg, Germany), Wellington Laboratories (Guelph, Ontario, Canada), Fluka 

(Buchs, Switzerland), Riedel de Häen (Seelze, Germany) or Sigma (St Louis, MO, 

USA). All reference standards presented purity higher than 93%. 

Stock working standards solutions were prepared in acetone. Working mixtures were 

prepared in hexane for GC analysis and in acetonitrile, methanol or water (depending on 

the concentration) for LC analysis.  

Acetone (pesticide residue analysis quality), hexane and ethyl acetate (ultra-trace 

quality), acetonitrile and methanol (HPLC-grade), sodium hydroxide (NaOH, >99%), 

ammonium acetate (>98%) and formic acid (98–100%) were purchased from Scharlab 

(Barcelona, Spain). HPLC-grade water was obtained by purifying demineralised water 

in a Milli-Q plus system from Millipore (Bedford, MA, USA). 

Leucine enkephalin and heptacose used as lock mass for LC and GC, respectively were 

purchased from Sigma-Aldrich. 

Cartridges used for solid phase extraction were Oasis HLB, 200 mg or 60 mg (Waters, 

Milford, MA, USA).  
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2.2 Hydrogeological description of the sampling area 
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Sample 

number 
Name 

Water 

type 

Sampling 

campaigns 

1 Upstream piezometer GW 1
st
,2

nd
,3

rd
,4

th
,5

th
 

2 Ntra. Sra Desamparados well GW 2
nd

,3
rd

,4
th

 

3 Sabater I well GW 1
st
,2

nd
,3

rd
,5

th
 

4 Sabater II well GW 1
st
,2

nd
,3

rd
,4

th
,5

th
 

5 Mijares river, Power-plant SW 1
st
,2

nd
,3

rd
,4

th
,5

th
 

6 Mijares river, Gauging-station  SW 1
st
,2

nd
,3

rd
,4

th
,5

th
 

7 San Martin de Porres well GW 2
nd

,3
rd

,4
th

,5
th

 

8 Reciplasa well GW 1
st
 

9 El Salvador well GW 1
st
 

SW, surface water; GW, groundwater 

 

 

Figure S1. Aerial map with the selected sampling points, located upstream and 

downstream of the flow direction of the aquifer. 



40 

 

 

2.3 GC-MS instrumentation 

2.3.1 GC-(EI)TOF MS 

An Agilent 6890N GC system (Paloalto, CA, USA) equipped with an Agilent 7683 

autosampler was coupled to a time-of-flight mass spectrometer, GCT (Waters), 

operating in EI mode. The GC separation was performed using the same characteristics 

as in the above GC-MS/MS system. The interface and source temperatures were both 

set to 250ºC and a solvent delay of 3 minutes was selected. TOF MS was operated at 1 

spectrum/s acquiring the mass range m/z 50-650 and using a multi-channel plate voltage 

of 2850V. TOF MS resolution was about 8500 (FWHM) at m/z 612 and heptacosa was 

used for the daily mass calibration as well as lock mass (m/z ion monitored was 

218.9856). The application manager TargetLynx, a module of MassLynx software, was 

used to process the qualitative and quantitative data obtained from standards and 

samples for target compounds. The application manager ChromaLynx, also a module of 

MassLynx software, was used to investigate the presence of non-target compounds in 

samples. Library searching was performed using the commercial NIST library 

2.3.2 GC-(APCI)QTOF MS 

The chromatographic determinations were performed using an Agilent 7890A GC 

system (Palo Alto, CA, USA), equipped with an Agilent 7693 autosampler, coupled to a 

quadrupole time of flight mass spectrometer Xevo G2 QTOF (Waters Corporation, 

Manchester, UK), operating with APCI source. The GC separation was performed using 

a fused silica DB-5MS column (30 m; 0.25 mm i.d., 0.25 µm f.t.) J&W Scientific 

(Folson, CA, USA). The oven temperature was programmed as follows: 90 ºC (1 min); 

5 ºC/min to 275 ºC; 40ºC/min to 320ºC (2 min). Total run: 40 min.  Pulsed splitless (50 

psi) injections of 1 µL of sample extracts were carried out with an injector temperature 
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of 280 °C and with a splitless time of 1 min. Helium 99.999 % (Praxair, Valencia, 

Spain) was used as carrier gas at a constant flow of 2 mL/min.  

In order to promote the protonation ionization mechanism in the APCI source an 

uncapped vial containing HPLC-grade water was placed in the designed holder into the 

APCI source door. The interface temperature was set to 310 ºC and of the source to 150 

ºC using N2 as auxiliary gas at 150 L/h flow, a make-up gas at 300 mL/min and the cone 

gas flow was set at 16 L/h. APCI corona pin was set at 1.6 µA and the cone voltage at 

26 V. The Xevo G2 QTOF MS was operated at a scan time of 0.4 s acquiring the mass 

range m/z 50-650. The TOF MS resolution was approximately 18,000 at full width half 

maximum (FWHM) at m/z 614.  

For MS
E
 measurements, two consecutive acquisition functions were used: a low energy 

function (LE), where a collision energy of 4 eV was selected, and a high energy 

function (HE), where a collision energy ramp (10-40 eV) was applied.  

Heptacose was used for the daily mass calibration. Continuous internal calibration was 

performed using a background ion coming from the GC-column bleed as lock mass 

([M+H]
+
 of octamethylcyclotetrasiloxane, m/z 297.0830). Two injections were 

performed for sample: the first one promoting the formation of the molecular ion, and 

the second one, promoting the formation of the protonated molecule. 

MassLynx software v 4.1 (Waters Corporation) was used to acquire data. ChromaLynx 

application manager was used in order to investigate the presence of the studied 

analytes. 
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2.4 LC-MS instrumentation 

2.4.1 UHPLC-(ESI)QTOF MS 

Two systems were used: 

 An ultra-performance Acquity liquid chromatography (UPLC
TM

) system (Waters) 

was interfaced to a QTOF mass spectrometer (QTOF Premier, Waters) using an 

orthogonal Z-spray electrospray interface. LC separation was performed using an 

Acquity UPLC HSS T3 column, 1.8 m, 100 mm x 2.1 mm I.D at a flow rate of 

300 L/min. The mobile phase consisted of water/methanol gradient (both 0.1 mM 

NH4Ac) where the methanol percentage was changed linearly as follows: 0 min, 

5%; 7 min, 90%; 8 min, 90%; 8.1 min, 5%. The injection volume was 20 L. TOF-

MS resolution was 10,000 FWHM (V-mode) at m/z 556. The MCP detector 

potential was set to 1750 V in positive ionization mode. A cone voltage of 25 V and 

a capillary voltage of 3 kV were used. The interface temperature was set to 350 ºC 

and the source temperature to 120 ºC. A scan time of 0.05 s was chosen. The 

automated attenuated function (dynamic range enhancement, DRE) was selected to 

correct possible mass peak saturations, making it feasible to achieve quantification 

and accurate mass measurements over a wide concentration range. Calibration 

experiments from 50 to 1000 m/z were performed monthly using a mixture of 

NaOH 0.05 M: HCOOH 10% (50:50). A 2 mg/L standard solution of leucine 

enkephalin was introduced via the lock spray needle (cone, voltage, 90 V) at a flow 

rate of 30 L/min.  

 A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a 

hybrid quadrupole-orthogonal acceleration-TOF mass spectrometer (Xevo G2 

QTOF, Waters Micromass, Manchester, UK), using an orthogonal Z-spray-ESI 

interface operating in both positive and negative ionisation modes. The UHPLC 
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separation was performed using an Acquity UPLC BEH C18 (Waters) 1.7 µm 

particle size 100 × 2.1 i.d. mm analytical column at a flow rate of 300 µL/min. The 

mobile phases used were A=H2O with 0.01% HCOOH and B=methanol with 

0.01% HCOOH. The percentage of organic modifier (B) was changed linearly as 

follows: 0 min, 10%; 14 min, 90%; 16 min, 90%; 16.01 min, 10%; 18 min, 10%. 

The injection volume was 50 µL. 

Nitrogen (from a nitrogen generator) was used as the drying gas and nebulizing gas. 

The desolvation gas flow was set at 1,000 L/h and the cone gas at 80 L/h. Capillary 

voltages of 0.7 and 2.5 kV were used in positive and negative ionisation modes, 

respectively. A cone voltage of 20 V was selected for both ionisation modes. 

Collision gas was argon 99.995% (Praxair, Valencia, Spain). The interface 

temperature was set to 650ºC and the source temperature to 130ºC. The column 

temperature was set to 40ºC. TOF MS resolution was approximately 20,000 at 

FWHM at m/z 556. MS data were acquired over an m/z range of 50–1,000. A scan 

time of 0.4 s was selected.  

Calibration of mass axis was conducted from m/z 50 to 1,000 with a 1:1 mixture of 

0.05 M NaOH:5% HCOOH diluted (1:25) with acetonitrile:water (80:20). For 

automated accurate mass measurement, the lock-spray probe was used, using as 

lock mass a solution of leucine enkephalin (10 µg/mL) in acetonitrile:water (50:50) 

at 0.1% HCOOH pumped at 20 µL/min through the lock-spray needle.  

For MS
E
 measurements, two consecutive acquisition functions were used: a low 

energy function (LE), where collision energy of 4 eV was selected, and a high 

energy function (HE), where a collision energy ramp (15-40 eV) was applied.  

For recalibrating the mass axis and ensuring a robust accurate mass measurement 

along time, the (de)protonated molecule of leucine enkephalin was used (m/z 

556.2771 in ESI+, m/z 554.2615 in ESI-). 
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MassLynx software v 4.1 (Waters Corporation) was used to acquire data. 

ChromaLynx application manager was used in order to investigate the presence of 

the studied analytes.  

2.4.2 UHPLC-(ESI)QqQ MS/MS 

Two different systems were used: 

 UHPLC-(ESI)QqQ MS/MS (TQD) 

A triple quadrupole mass spectrometer was interfaced to a Waters ACQUITY 

UPLC
TM

 system (Waters Corp., Milford, MA, USA), equipped with a quaternary 

pump system. Chromatographic separation was carried out using an ACQUITY 

UPLC BEH C18 column (50 x 2.1 mm i.d., particle size 1.7 µm) (Waters). An 

optimized gradient was used at a constant flow rate of 0.3 mL/min using methanol 

(solvent A) and 5 mM ammonium acetate 0.1% formic acid (solvent B). The 

gradient elution was: 0 min, 10% A; 0-3 min linear from 10 to 90% A; 3-3.5 min, 

90% A; 3.5-3.6 min linear from 90 to 10 % A, return to initial conditions; 3.6–6 

min 10% A, equilibration of the column. The injection volume was 1 L. 

A TQD
TM

 (quadrupole-hexapole-quadrupole) mass spectrometer with an 

orthogonal electrospray ionization source (ESI) Z-spray (Waters Corp., Milford, 

MA, USA) was used. Dry cone gas as well as desolvation gas was nitrogen 

generated from pressurized air in a N2 LC-MS (Claind, Teknokroma, Barcelona, 

Spain) nitrogen generator. The cone gas and the desolvation gas flows were 

optimized at approximately 60 L/h and 1100 L/h, respectively. For operation in the 

MS/MS mode, collision gas was Argon 99.995% (Carburos Metálicos, Valencia, 

Spain) with a pressure of 2 x 10
-3

 mbar in the T-wave cell. Other parameters 

optimized were: capillary voltage, 3.5 kV in positive and 3 kV in negative 
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ionisation mode; lens voltage 0.3 V; source temperature, 120 °C and desolvation 

temperature, 500 °C. Dwell times of 0.01 s/scan were selected. 

MassLynx software v 4.1 (Waters Corporation) was used to acquire data. 

TargetLynx application manager was used to quantify the concentration levels of 

the target analytes. 

 UHPLC-(ESI)QqQ MS/MS (TQS) 

A triple quadrupole mass spectrometer was interfaced to a Waters ACQUITY 

UPLC
TM 

system (Waters Corp., Milford, MA, USA), equipped with a binary pump 

system. Chromatographic separation was carried out using an ACQUITY UPLC 

BEH C18 column (100 x 2.1 mm i.d., particle size 1.7 µm) (Waters). An optimized 

gradient was used at a constant flow rate of 0.3 mL/min using water/methanol (both 

0.01% NH3). A binary gradient elution was applied, changing linearly the methanol 

percentage as follows: 0 min, 40%; 1 min, 40%; 5 min, 95%; 6 min, 95%; 6.1 min, 

40%. The chromatographic run time was 10 min. The injection volume was 1 µL. 

A Xevo TQ-S
TM

 triple quadrupole mass spectrometer (Waters Micromass, 

Manchester, UK), equipped with ESI source was used. Determination of analytes 

was performed using ESI source in both positive and negative ion modes. Drying 

gas as well as nebulising gas was nitrogen (Praxair, Valencia, Spain). The cone gas 

flow rate was optimized at 150 L/h and the desolvation gas flow was set to 1200 

L/h. The desolvation temperature was 650 ºC. For operation in MS/MS mode, 

collision gas was Argon 99.995% (Praxair, Valencia, Spain) with a pressure of 

approximately 4 x 10
-3

 mbar in the collision cell. Electrospray needle capillary 

voltage was fixed at 3.5 kV in positive ionisation mode. The source temperature 

was set to 150 ºC. The column temperature was maintained at 45 ºC.  
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MassLynx software v 4.1 (Waters Corporation) was used to acquire data. 

TargetLynx application manager was used to quantify the concentration levels of 

the target analytes. 
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2.6 Screening by (Q)TOF MS 

Table S1. Organics compounds included in the screening methodology based on GC-

QTOF MS and LC-QTOF MS. 

Family 
Total number of 

compounds 

Number of compounds with 

reference standard available 

   

LC-QTOF MS 

 

  
Pesticides* 543 281 

Pharmaceuticals and vet drugs 892 226 

Drugs of abuse 140 29 

UV filters 22 3 

   

GC-QTOF MS   
Pesticides* 425 160 

PAHs 24 24 

PCBs 18 18 

PBDEs 11 11 

PFCs 24 8 

Musks 15 13 

Antimicrobials 6 6 

Insect repellents 2 1 

*Several pesticides were screened by both GC and LC-QTOF MS. The total number of different 

pesticides investigated by both techniques was 698 
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2.7 Target quantitative analysis by LC-MS/MS QqQ 

Table S2. UHPLC-QqQ MS/MS conditions for analyte quantification. Quantification (Q) and 

confirmation (q) transitions. Other compounds different than pesticides are in italic. 

Compounds Polarity 
Cone 

voltage (V) 
Q transition  

Collision 

energy 

(eV) 

q transition 

Collision 

energy 

(eV)
 

LOQ 

(ng/L) 

Atrazine ES+ 50 216.1 > 174.1 20 216.1 > 96.2 25 0.4 

Atrazine, deisopropyl (DIA) ES+ 50 174.0 > 68.0 20 174.0 > 96.0 15 2 

Atrazine, desethyl (DEA) ES+ 50 188.0 > 146.0 15 188.0 > 104.0 15 2 

Bromacil
a
 ES- 45 259.0 > 203.0 20 261.0 > 205.0 20 25 

Carbaryl ES+ 30 202.0 > 145.1 20 202.0 > 127.2 30 5 

Carbendazim
a
 ES+ 40 192.0 > 160.0 20 192.0 > 132.0 30 25 

Carbofuran ES+ 30 222.2 > 165.3 15 222.2 > 123.2 20 2 

Diuron ES+ 30 233.1 > 72.2 20 233.1 > 160.1 20 9 

Imidacloprid ES+ 20 256.1 > 209.2 10 256.1 > 175.1 10 9 

Isoproturon ES+ 20 207.2 > 72.2 20 207.2 > 134.2 20 0.2 

MCPA
a
 ES- 40 199.0 > 141.0 10 201.0 > 143.0 10 25 

Metalaxyl ES+ 35 280.1 > 220.1 15 280.1 > 160.1 25 1 

Metolachlor ES+ 50 284.2 > 252.0 15 284.2  > 176.1 25 2 

Pirimicarb ES+ 20 239.2 > 182.2 20 239.2 > 109.2 20 0.2 

Pyridaphention ES+ 20 340.9 > 189.2 20 340.9 > 205.2 20 2 

Simazine ES+ 20 202.2 > 132.2 20 202.2 > 124.0 20 3 

Terbacil
a
 ES- 40 215.2 > 159.1 15 217.2 > 161.1 15 25 

Terbumetone ES+ 50 226.0 > 170.2 20 226.0 > 75.0 30 0.5 

Terbumetone, desethyl ES+ 50 198.3 > 142.2 15 198.3 > 86.1 20 0.3 

Terbutylazine ES+ 20 230.2 > 174.1 15 230.2 > 96.0 20 0.3 

Terbuthylazine, 2-hydroxy ES+ 30 212.2 > 156.1 15 212.2 > 86.1 20 0.3 

Terbuthylazine, desethyl ES+ 20 202.2 > 145.9 25 202.2 > 79.0 25 1 

Terbutryn ES+ 30 242.1 > 91.2 30 242.1 > 186.2 30 2 

Thiabendazole ES+ 20 202.1 > 131.2 40 202.1 > 175.1 40 1 

Acetaminophen
a
 ES+ 30 152.1 > 110.1 15 152.1 > 93.0 25 25 

Carbamazepine ES+ 50 237.1 > 194.2 20 237.1 > 179.0 35 0.2 

Clarithromycin
a
 ES+ 55 590.3 > 158.1 25 748.3 > 158.1 30 25 

Erithromycin
a
 ES+ 35 734.4 > 158.1 30 734.4 > 576.3 25 25 

Ibuprofen
a
 ES- 30 205.1 > 161.1 10 - - 25 

Irbesartan ES+ 20 429.3 > 207.1 30 429.3 > 195.2 25 0.4 

Valsartan ES+ 20 436.3 > 207.0 25 436.5 > 291.1 20 6 

Benzoylecgonine ES+ 50 290.3 > 168.2 20 290.3 > 105.0 30 0.3 

Cocaine
a
 ES+ 30 304.1 > 182.2 20 304.1 > 82.0 30 25 

a
Compounds analyzed only in campaigns 1

st
, 2

nd
 and 3

rd
, by using UHPLC-QqQ MS/MS (TQD) 
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3. RESULTS AND DISCUSSION 

3.1 Screening analysis (GC-(Q)TOF and UHPLC-QTOF MS) 
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Figure S2. Number of compounds detected in every water sample analyzed by GC-

(Q)TOF MS and UHPLC-QTOF MS screenings 
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3.2 Quantitative analysis (UHPLC-QqQ MS/MS) 
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Figure S3. Concentrations of positive findings corresponding to five triazine herbicides 

detected in water samples from the surrounding area. Points 5 and 6 correspond to 

surface water; the remaining points correspond to groundwater (more information on the 

sampling sites in Hydrogeological description of the sampling area, and in Figure S1). 
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Figure S4. Concentrations of positive findings corresponding to three pesticides detected 

in water samples from the surrounding area. Points 5 and 6 correspond to surface water; 

the remaining points correspond to groundwater (more information on the sampling sites 

in Hydrogeological description of the sampling area, and in Figure S1). 

 

 
 


