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Abstract. Plane valuations at infinity are classified in five types. Valuations in one of
them determine weight functions which take values on semigroups of Z2. These semi-
groups are generated by δ-sequences in Z2. We introduce simple δ-sequences in Z2 and
study the evaluation codes of maximal length that they define. These codes are geomet-
ric and come from order domains. We give a bound on their minimum distance which
improves the Andersen-Geil one. We also give coset bounds for the involved codes.

1. Introduction

Error-correcting codes defined with tools of Algebraic Geometry were introduced by
Goppa [28, 29]. Among their virtues are that they include very useful codes as Reed-
Solomon and Reed-Muller ones and some of them attain the Varshamov-Gilbert bound
[58]. In addition, some deep results of Algebraic Geometry such as the Riemann-Roch
Theorem allow us to get good estimations for their parameters.

The concepts of order and weight function were introduced in [31] with the aim of
avoiding technicalities in the treatment of some codes defined with Algebraic Geometry.
Such functions, w, are defined over a Fq-algebra, Fq being the finite field of q elements
where the codes are supported. In this approach, w takes values onto a sub-semigroup
S of the semigroup of nonnegative integers N0. One-point AG codes can be regarded as
codes of this type given by certain weight functions and their associated order domains
are affine coordinate rings of algebraic curves with exactly one place at infinity [43].

There is no need of considering S as a sub-semigroup of N0. In fact, one can consider
more general semigroups [24] and this procedure gives rise to a huge family of codes which
has not been much studied. An order function defines a filtration of vector spaces contained
in its corresponding order domain and, together with an evaluation map, determine two
families of error-correcting codes, usually named evaluation and dual families of codes.
Lately, these families have been called primary and dual families of (evaluation) codes
defined by the pair order function and evaluation map [27].

Dual families have been considered the most interesting ones. This fact is due to the
knowledge, on the one hand, of the so-called order bounds on the minimum distance of
these codes and, on the other hand, of successful decoding algorithms. The mentioned
bounds were stated by Feng and Rao in the context of codes on affine varieties [11, 12, 13]
and, afterwards, they have been translated to the order domains case [31]. With respect
to the decoding algorithms, which have been mostly described in the context of AG codes,
the so-called Berlekamp-Massey-Sakata algorithm [4, 41, 49, 50, 51] was used to get fast
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implementations of the modified algorithm of [33, 55] (see [34, 32]) and of the majority
voting scheme for unknown syndromes of Feng and Rao [11], [57] (see also [52, 53]). This
last procedure is capable of correcting errors up to half of the order bound.

The above mentioned primary family of codes has been studied in a recent paper [3].
There were also introduced the improved primary codes and an order-type bound for
primary codes. In the recent literature, this bound has been named the Andersen-Geil
bound. On the other hand, in [30] has been proved that AG codes can be decoded beyond
the capacity of the algorithms previously mentioned. With a mix of this interpolation
based list decoding and the syndrome decoding with majority voting scheme, it is shown
in [37, 38] how to decode certain family of one-point AG codes up to half of the Andersen-
Geil bound (see also [25, 26, 39]). These papers increase the interest on primary codes.
Furthermore, a connection between the Feng-Rao and Andersen-Geil bounds is described
in [27], which allows us to decode primary codes and suggests the authors to rename
Andersen-Geil bound as Feng-Rao (or order) bound for primary codes. In the sequel, we
will use this terminology. The above procedures do not guarantee decoding up to the actual
distance, this can be carried out by using the affine variety code point of view [14, 40].
Notice that this point of view is also useful to construct quantum codes [15, 16, 17].

A lot of weight functions can be defined when we have no restriction on the semigroup
S. We know little about these functions, however this is not the case of a close object:
valuations. They have been studied because of their relation with Singularity Theory in
Algebraic Geometry and plane valuations are completely classified [56] (see also [59]). As a
consequence, valuations seem to be one of the best sources for obtaining weight functions.
In [21, Proposition 2.2], one can see how to get weight functions from valuations and, in
[18], a class of plane valuations which fits to these purposes, plane valuations at infinity,
is introduced. Semigroups of weight functions defined by them are well-known because
they are generated by the so-called δ-sequences. These valuations are related to curves
with only one place at infinity, which have useful properties for coding theory as one can
see in the paper [7]. To construct the above mentioned weight functions, one only needs
a δ-sequence. Order bounds for the codes of the corresponding dual families and some
well-behaved examples can be seen in [18]. To compute the minimum distance for primary
families seems to be a difficult problem since there exist different types of δ-sequences (in
Z2, Q and R) providing different weight functions that must be combined with evaluation
maps. Notice that these codes have length at most q2, but this length can be increased as
much as one desires by considering several valuations [19].

In this paper, we introduce what we call simple δ-sequences in Z2 and study the families
of codes over Fq of maximal length given by them as a part of a general study of evaluation
codes given by δ-sequences we are carrying through. The supporting order domain of
codes given by δ-sequences is the polynomial ring in two indeterminates. These codes are
obtained by evaluating polynomials at points in F2

q . Unlike the codes defined by algebraic
curves, we do not need to worry about looking for rational points. Our codes can also
be defined by considering weight functions over quotients of Fq-algebras (see Section 3.1)
and when one uses simple δ-sequences, the corresponding ∆-set has a plain structure.
Recall that the ∆-set is the set of elements in the semigroup of the weight function giving
different codes. We describe it for simple δ-sequences of two elements in Section 3.1 and,
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otherwise, in Proposition 3.4. We complete this last result with an algorithm, Algorithm
1, that computes the mentioned ∆-set.

Reed-Muller codes RMq (r, 2) are included in (and improved by) families of codes given
by δ-sequences with two elements. For codes in these families and with the help of our
knowledge of their ∆-sets, in Proposition 3.3, we prove that their minimum distances
behave as in the dual case and reach the primary Feng-Rao bound.

Our main results (Theorems 3.9 and 3.10) deal with bounding the minimum distance
of codes given by simple δ-sequences with more than two elements. Theorem 3.9 provides
a bound under suitable conditions of the ground field and Theorem 3.10 proves that the
mentioned bound is at least as good as the primary Feng-Rao one. Notice that, in some
cases, this last bound is significantly improved by ours, as one can see in Example 3.12
and in Figure 2.

In Section 4, we prove that, among the δ-sequences with two elements, {(1, 0), (1,−1)}
gives the best family of primary codes. Moreover, the simple δ-sequences that enlarge the
previous one are candidates for improving the mentioned family. Some good codes over
different fields obtained with our procedure can be found in Table 1. These codes have
the dual advantage that they have the best known parameters and can be decoded up
to the distance bound in an efficient way. With respect to so-called improved primary
codes, we show that the δ-sequences with two elements give the best ones and that the
family of obtained codes coincides with the so-called hyperbolic one in two variables. For
δ-sequences with more than two elements, we introduce the δ-improved codes which, in
our examples, are at least as good as the hyperbolic ones.

In our final section, the ideas previously developed in the paper are applied to obtain
coset bounds for the codimension one pairs of the family of codes given by simple δ-
sequences. These bounds are useful to study thresholds for qualified and unqualified sets
for secret sharing schemes based on linear codes. A brief description of secret sharing
schemes is given in this section and we refer to [10, 36] and references therein for more
details. Our bounds are presented in Theorem 5.2. We also give an example of two codes
of codimension one with larger coset bound than that of the example given in [10, Example
5.4].

We organize this paper as follows. Section 2 describes the main notions and results
related with the construction of the evaluation codes defined by δ-sequences. We give the
notion of δ-sequence and some properties of the attached semigroups. Furthermore, we
show how to construct weight functions from δ-sequences and, also, some results we will
use in the paper concerning their associated evaluation codes. In Section 3 we state the
main results of this paper. There, we describe the algebraic structure of the evaluation
codes of maximal length given by δ-sequences. We also study the evaluation codes defined
by simple δ-sequences and we give the mentioned bound on the minimum distance of these
codes. Section 4 studies the parameters and performances of the primary codes defined
by simple δ-sequences and their associated improved codes, and Section 5 contains the
mentioned results about coset bounds.
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2. Preliminaries

In this section we introduce the main notions and results related with the construction of
evaluation codes defined by δ-sequences.

2.1. δ-sequences. Denote by N the set positive integers, the so-called δ-sequences in N
were introduced by Abhyankar and Moh to study semigroups at infinity of projective plane
curves with only one branch at infinity [1, 2]. In [18] this notion is extended by introducing
the concepts of δ-sequence in Z2, R and Q. These sequences span semigroups at infinity
of plane valuations at infinity and, as a consequence, allow us to define weight functions
and attached families of evaluation codes.

Definition 2.1. A δ-sequence in N is a finite sequence Γ = {γ0, γ1, . . . , γg} of positive
integers, with g ≥ 1, which satisfies the following conditions:

1) If di = gcd (γ0, γ1, . . . , γi−1) for 1 ≤ i ≤ g + 1 and ni = di/di+1 for 1 ≤ i ≤ g, then
dg+1 = 1 and ni > 1 for 1 ≤ i ≤ g.

2) niγi belongs to the semigroup generated in N0 by γ0, γ1, . . . , γi−1 for 1 ≤ i ≤ g.
3) γ0 > γ1 and niγi > γi+1 for 1 ≤ i ≤ g − 1.

SΓ will denote the additive semigroup generated by Γ and when g ≥ 2, the vector
n := (n1, n2, . . . , ng−1) will be called the ν-vector of Γ. Clearly, γ0 =

∏g
i=1 ni and SΓ is a

telescopic semigroup [31, Section 5.4]. As a consequence, when g ≥ 2, the product niγi,
1 ≤ i ≤ g, can be expressed in a unique form as:

(1) niγi = ai0γ0 + ai1γ1 + · · ·+ ai,i−1γi−1,

aij , 0 ≤ j ≤ i − 1, being integers such that ai0 ≥ 0, gcd (ni, ai0, . . . , ai,i−1) = 1 and
0 ≤ aij < nj for 1 ≤ j ≤ i− 1. So, every γ ∈ SΓ can be represented in an unique form as:

(2) γ = b0γ0 + b1γ1 + · · ·+ bgγg,

where the bi’s are nonnegative integers such that 0 ≤ bi < ni for 1 ≤ i ≤ g. To obtain (2),
it suffices to consider an expression γ =

∑g
i=0 ciγi and use (1) when ci ≥ ni, i > 0.

A family of approximate polynomials (or simply, approximates) for Γ is any sequence
Q0, Q1, . . . , Qg of polynomials in the polynomial ring in two indeterminates, Fq [X,Y ],
obtained as follows: Q0 := X, Q1 := Y and

(3) Qi+1 := Qni
i − λi

i−1∏
j=0

Q
aij
j ,

where the values λi, 1 ≤ i ≤ g − 1, are nonzero elements in Fq and the exponents aij are
the coefficients described in (1).

Every δ-sequence Γ in N attached with a singular curve with only one place at infinity
determines a sequence of pairs, (ei,mi), which characterize the topology of the corre-
sponding curve [6, 18]. This sequence is defined as follows: if γ0 − γ1 does not divide γ0,
then

e0 := γ0 − γ1, m0 := γ0,

ei := di+1, mi := niγi − γi+1 for 1 ≤ i ≤ g − 1;

and otherwise
e0 := γ0 − γ1, m0 := γ0 + n1γ1 − γ2
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ei := di+2, mi := ni+1γi+1 − γi+2 for 1 ≤ i ≤ g − 2.

Let Γ∗ =
{
γ∗0 , γ

∗
1 , . . . , γ

∗
g

}
be a δ-sequence in N. For our purposes, we only need to

consider the following two cases.
Case i): γ∗0 − γ∗1 does not divide γ∗0 and g ≥ 1 and case ii): γ∗0 − γ∗1 divides γ∗0 and

g ≥ 2. We write h = g − 1 in case i) and otherwise h will be g − 2. In both cases, set
⟨a1; a2, . . . , at⟩, at ≥ 2, the continued fraction expansion of the quotient mh/eh given by
the last existing pair (ei,mi) attached with Γ∗ and defined as in the above paragraph. To
finish, we define the finite recurrence relation

(4) yi = at−iyi−1 + yi−2 1 ≤ i ≤ t− 1 with y−1 = (0, 1) and y0 = (1, 0) .

The following concept, introduced in [18], will be essential for our purposes.

Definition 2.2. With the above notations, a δ-sequence in Z2 is a finite sequence Γ =
{γ0, γ1, . . . , γg} ⊂ Z2, given by a δ-sequence in N as in the above paragraph, Γ∗ ={
γ∗0 , γ

∗
1 , . . . , γ

∗
g

}
, and defined as follows.

• If Γ∗ belongs either to the case i) with g ≥ 2 or to the case ii) with g ≥ 3, then

γi =
γ∗i

Aat +B
(A,B) for 0 ≤ i ≤ g − 1, and

γg =
γ∗g +A′ at +B′

Aat +B
(A,B)−

(
A′, B′) ,

where (A,B) = yt−2 and (A′, B′) = yt−3.
• If Γ∗ belongs to the case i) with g = 1, then γ0 = yt−1 and γ1 = γ0 − yt−2.
• Finally, if Γ∗ belongs to the case ii) with g = 2, then γ0 = j yt−2, γ1 = γ0 − yt−2

and γ2 = γ0 +n1γ1 −yt−1, where j = γ∗0/ (γ
∗
0 − γ∗1) ∈ N and n1 = γ∗0/ gcd (γ

∗
0 , γ

∗
1).

Codes in this paper will be defined from functions w : A → S ∪ {∞}, where A is a
domain and S certain type of semigroup, called weight functions (see Definition 2.6). A
weight function w defines a valuation ν := −w of the quotient field of A. A δ-sequence
in Z2 could be defined as the minimal generating set of the semigroup −ν(R) provided
by the affine domain corresponding with a plane valuation at infinity ν of type C (see
[18, 19] for details). However this definition is not constructive. Plane valuations are
classified in five types according to the structure of their dual graphs. This structure
determines the topology encoded by the valuation [56]. Plane valuations at infinity cover
a large class of plane valuations and are the most natural for coding purposes. In this
case, generators of the semigroup −ν(R) allow us to get the dual graph of ν (which is
infinite) by using continued fractions and recurrence relations. This is the reason behind
the previous definition. To run over all possibilities, one must distinguish between the
cases where γ∗0 − γ∗1 does not divide γ∗0 and those where the opposite happens. This was
observed in [1, 2] for the close family of curves with only one place at infinity. Notice that
the valuations here involved are related with singularities and the quotient γ∗0/(γ

∗
0 − γ∗1)

does not reflect a singularity whenever γ∗0 − γ∗1 divides γ∗0 , so the corresponding values e0
and m0 must be defined in a different way as the formulae before Definition 2.2 show.

According to the above definition, we will say that Γ is the δ-sequence in Z2 determined
by the δ-sequence in N, Γ∗. Γ generates an additive well-ordered semigroup (with respect
to the lexicographic order < in Z2 with (0, 1) < (1, 0)), which will be denoted as SΓ. As
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an example, we can say that Γ = {(18, 9), (6, 3), (4, 2), (1, 1)} is a δ-sequence determined
by Γ∗ = {45, 15, 10, 3}. Indeed, the pair (m2, e2) for Γ∗ is (3 · 10 − 3, 5) = (27, 5) and
⟨a1; a2, a3⟩ = ⟨5; 2, 2⟩, so t = 3, y−1 = (0, 1), y0 = (1, 0) = yt−3 = (A′, B′) and (A,B) =
2(1, 0) + (0, 1) = (2, 1).

Two δ-sequences in N that determine the same δ-sequence in Z2 share the same ν-
vector. Indeed, one can define values di = gcd(γ0, γ1, . . . γi−1) ∈ Z2, 1 ≤ i ≤ g, by
using an extended version of the Euclidean algorithm [19, Proposition 3.2], and therefore
quotients ni = di/di+1, 1 ≤ i ≤ g − 1, in the sense that di = nidi+1. For instance, in the
above example, gcd ((18, 9), (6, 3)) = (6, 3) because by the extended Euclidean algorithm
(18, 9) = 3(6, 3) + (0, 0), gcd ((18, 9), (6, 3), (4, 2)) = (2, 1) and 3 = (6, 3)/(2, 1). The
construction of Γ proves that these values ni coincide with those n∗i for Γ∗ since each γi,

0 ≤ i ≤ g − 1, is a multiple (by a pair) of γ∗i . Note also that di =
d∗i
d∗g
(A,B), 1 ≤ i ≤ g,

and, as we have said, ni = di/di+1 = d∗i /d
∗
i+1 = n∗i , 1 ≤ i ≤ g − 1. The above fact allows

us to extend the notion of approximate polynomial to δ-sequences in Z2.

Definition 2.3. A family of approximate polynomials for a δ-sequence in Z2, Γ, is a
sequence of approximate polynomials for any δ-sequence in N, Γ∗, that determines Γ.
Moreover, when g ≥ 2, the ν-vector of Γ is defined as the ν-vector of Γ∗.

The semigroup SΓ of a δ-sequence in Z2, Γ, is telescopic in sense of that it is cancellative,
well-ordered and generated by a finite set {α1, α2, . . . , αr} lexicographically ordered, where
the points {αi}r−1

i=1 belong to the same line L which passes through (0, 0), αr ̸∈ L and

there exists a telescopic sequence {βi}r−1
i=1 such that the morphism of ordered semigroups

ρ : ⟨α1, α2, . . . , αr−1⟩ → ⟨β1, β2, . . . , βr−1⟩, ρ(αi) = βi, is an isomorphism (see Definition
5.1 and the remark before Section 5.2 in [18]). Then, the following result holds.

Proposition 2.4. [18, Proposition 5.2] Let Γ = {γ0, γ1, . . . , γg} be a δ-sequence in Z2

and, when g ≥ 2, n := (n1, n2, . . . , ng−1) its ν-vector. Then, any element γ ∈ SΓ can be
expressed in a unique form as

γ = b0γ0 + b1γ1 + · · ·+ bgγg,

where 0 ≤ b0, bg and, when g ≥ 2, 0 ≤ bi < ni for 1 ≤ i ≤ g − 1.

Finally, we state an straightforward property of the δ-sequences, which will be used to
deduce the main result of this paper.

Lemma 2.5. Let Γ = {γ0, γ1, . . . , γg} be a δ-sequence in N (respectively, in Z2) with
g ≥ 2. Let (n1, n2, . . . , ng−1) be the ν-vector of Γ. Suppose that γ0 = n1γ1, then Γ′ =
{γ1, γ2, . . . , γg} is a δ-sequence in N (respectively, in Z2) with ν-vector (n2, n3, . . . , ng−1).

2.2. Weight functions determined by δ-sequences. δ-sequences Γ in Z2 provide
weight functions ωΓ : Fq [X,Y ] → SΓ ∪ {−∞} as it was shown in [18, Theorem 4.9].
Next, we show how ωΓ works. In the rest of this paper, δ-sequence will mean δ-sequence
in Z2. Let us recall the definition of weight function.

Definition 2.6. Let A be an algebra over Fq and set S an additive, commutative and well-
ordered semigroup. We also denote by < the ordering in S. Extend S to the semigroup
S−∞ = S∪{−∞} by considering that −∞ < s whenever S ∋ s ̸= −∞ and −∞+s = −∞
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for all s ∈ S−∞. A weight function is a surjective map w : A → S−∞ which satisfies the
following conditions for all a, b ∈ A:

1) w (a) = −∞ if and only if a = 0,
2) w (λ a) = w (a) for all λ ∈ Fq − {0},
3) w (a+ b) ≤ max {w (a) , w (b)},
4) if w (a) = w (b), a ̸= 0, then there exist λ ∈ Fq−{0} such that w (a− λ b) < w (b),
5) w (ab) = w (a) + w (b).

In this paper, an algebra which has a weight function as above is called an order domain
over Fq.

In order to define a weight function associated to the δ-sequence Γ = {γ0, γ1, . . . , γg},
we first consider a family of approximates, Q0, Q1, . . . , Qg, and we take into account that
the following set is a basis of Fq [X,Y ] as a vector space over Fq:{

Qβ :=

g∏
i=0

Qbi
i | β =

g∑
i=0

biγi ∈ SΓ and b := (b0, b1, . . . , bg) ∈ Ωn

}
,

where Ωn :=
{
b ∈ Zg+1 | 0 ≤ b0, bg and 0 ≤ bi < ni for 1 ≤ i ≤ g − 1 if g ≥ 2

}
. The reader

can see a proof of this fact in [18, Theorem 4.9] and a shorter and simpler one in [46].
This basis is well-behaving, which means that for α, β, γ ∈ SΓ, l(α, γ) < l(β, γ) whenever

α < β, where l(α, β) = min{γ ∈ Γ | QαQβ ∈ Rγ} and Rγ is the subspace generated by

{Qβ | β ≤ γ} (see [24, Definition 3.1]). Then, as a consequence of [24, Proposition 3.3]
and [22, Proposition I.3.18], it happens that the mapping ωΓ : Fq [X,Y ] → SΓ ∪ {−∞}
given by ωΓ (0) := −∞ and

ωΓ (F ) := max
{
β ∈ SΓ | Qβ belongs to the support of F

}
is a weight function. Moreover, ωΓ is the unique weight function such that ωΓ (Qi) = γi
for 0 ≤ i ≤ g. From now on, ωΓ (ω if no confusion arises) will be called the weight function
determined by Γ.

2.3. Evaluation codes defined by weight functions. In this section, we are going to
describe primary and dual families of evaluation codes given by weight functions and some
of their properties. Our main references are [31, 22, 3].

Let A be an order domain with attached weight function w : A → S−∞. Let B :=
{fs | s ∈ S} be a well-behaving basis of A such that w (ft) < w (fs) whenever t < s.
Consider a surjective Fq-algebra morphism φ : A → Fn

q , with n ∈ N, that is, a linear
mapping over Fq such that φ (fg) = φ (f) ∗ φ (g) for all f, g ∈ A, where ∗ represents
the component-wise product. Then, the primary (or evaluation) code determined by an
element s ∈ S is defined as the vector subspace E (s) of Fn

q given by

E (s) := spanFq
{φ (ft) | t ≤ s} ,

and the dual code determined by s is the vector subspace C (s) of Fn
q given by

C (s) := E (s)⊥ = {c | c · φ (ft) = 0 for t ≤ s} ,
where · denotes the inner product on Fn

q . The map φ is surjective, so there exists ξ ∈ S
such that E (ξ) = Fn

q and, therefore, C (ξ) = {0}.
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Now, set s1 := 0 and for 2 ≤ i ≤ n, let si be the smallest element in S such that it is
greater than s1, s2, . . . , si−1 and E (t) ̸= E (si) for all t < si. Then, we write ∆ (A,w, φ)
the set {s1, s2, . . . , sn}. It is clear that {φ (fsi) | 1 ≤ i ≤ n} is a basis of Fn

q as a vector
space over Fq. For s ∈ ∆(A,w, φ), set

M (s) :=
{
t ∈ ∆(A,w, φ) | t = s+ s′ for some s′ ∈ ∆(A,w, φ)

}
and for s ∈ S,

N (s) :=
{
t ∈ S | t+ s′ = s for some s′ ∈ S

}
.

Also, write σ (s) := #M (s) and µ (s) := #N (s). Then, one can define the improved
primary l-code, 0 < l ≤ n, as

Ẽ (l) := spanFq
{φ (fsi) | si ∈ ∆(A,w, φ) and σ (si) ≥ l} .

And, dually,

C̃(l) :=
{
c ∈ Fn

q | c · φ(fsi) = 0 where si ∈ ∆(A,w, φ) and µ(si) < l
}
.

The following result summarizes the known bounds for the minimum distances, d, of
the primary and dual codes defined by w and φ (see [12, 13, 31, 22, 3]).

Theorem 2.7. Let s ∈ S and 0 < l ≤ n. For primary codes, the following bounds (named,
in case 1), either Andersen-Geil or primary Feng-Rao or primary order bounds) hold.

1) d (E (s)) ≥ min {σ (t) | t ∈ ∆(A,w, φ) with t ≤ s},
2) d

(
Ẽ (l)

)
≥ l.

And, for dual ones, one gets the bounds (called, in case 1), either Feng-Rao or dual Feng-
Rao or order ones).

1) d (C (s)) ≥ dφ (s) ≥ d (s), where

dφ (s) := min {µ (t) | t ∈ ∆(A,w, φ) such that t > s}
and d (s) := min {µ (t) | t > s},

2) d
(
C̃ (l)

)
≥ l.

Generally speaking, it is a hard task to compute ∆ (A,w, φ). However, under some
restrictions and when A is an affine algebra, in [3] it is described a way to do it. We will
use this way to give a bound on the minimum distance of the primary codes given by
simple δ-sequences. First, let us explain some known facts.

Set A = Fq [X1, X2, . . . , Xm] the polynomial ring in m indeterminates. Suppose that
weights p (X1), p (X2), . . ., p (Xm) ∈ Nr

0 \ {0} and a monomial ordering < in Nr
0 are

known. A monomial Xα = Xα1
1 Xα2

2 · · ·Xαm
m , where α = (α1, α2, . . . , αm) ∈ Nm

0 , has
weight p (Xα) :=

∑m
i=1 αip (Xi) and, for F ∈ A, the weight of F is defined as

p (F ) := max {p (Xα) | Xα belongs to the support of F} .
Let M be the set of monomials in A, then p induces a weighted degree ordering on M
defined as M1 <p M2 if p (M1) < p (M2) or p (M1) = p (M2) and M1 ≺ M2, where ≺ is
some fixed monomial ordering in M.

Recall that the footprint (or Hilbert staircase) of an ideal of the ring A, endowed with
a monomial ordering, are those monomials which are not leading ones of any polynomial
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in the ideal. Assume that I is an ideal of A and G a Gröbner basis of I with respect to
the weighted degree ordering <p such that the monomials in the footprint ∆<p (I) have
mutually distinct weights and all the polynomials in G have exactly two monomials with
highest weight in their support. Then, it holds:

Theorem 2.8. [3] With the above conditions, R := A/I is an order domain with weight
function ρ given by ρ (0) = −∞ and ρ (F + I) = p (F ), for F ̸= 0.

Furthermore, if φ : R→ Fn
q is the Fq-algebra morphism given by

φ (F + I) = (F (P1) , F (P2) , . . . , F (Pn)) ,

where VFq (I) = {P1, P2, . . . , Pn} is the variety of I over Fq and

Iq = I + ⟨Xq
1 −X1, X

q
2 −X2, . . . , X

q
m −Xm⟩ ,

then, ∆(R, ρ, φ) = p
(
∆<p (Iq)

)
.

Improved dual codes and their weaker relatives (defined without considering the map
φ) can also be introduced as follows. Fix a positive integer l and define R(l) := {s ∈
S | µ(s) < l} and r(l) = # R(l). Also consider the set Rφ(l) := {s ∈ S | µ(s) <
l and C(s) ̸= C(s−)}, where s− := max{t ∈ S | t < s} and set rφ(l) = # Rφ(l).

Then, define the codes

E(l) := spanFq
{φ (ft) | t ∈ R(l)} ,

and Eφ(l) which is defined analogously but replacing R(l) with Rφ(l). We are interested

in the dual codes C(l) := (E(l))⊥ and Cφ(l) := (Eφ(l))
⊥. Clearly, C̃(l) = Cφ(l).

It can be shown that C(l) and Cφ(l) have minimum distance at least l. A proof can be
derived following that given in [31, Proposition 4.23] for semigroups included in N0. In
addition, the dimension of C(l) is at least n− r(l) and that of Cφ(l) equals n− rφ(l).

3. Evaluation codes defined by simple δ-sequences

δ-sequences (in Z2, R or Q) were introduced in [18] as generating sets of semigroups of
weight functions defined by plane valuations at infinity. Order bounds for dual evaluation
codes were also given. Using several weight functions of this type, larger codes also given
by weight functions can be constructed [19].

In the first part of this section, we show how to translate the study of evaluation codes
given by δ-sequences (in Z2) to the context we have just explained in order to apply
Theorem 2.8.

The notion of simple δ-sequence is introduced in the second part of this section, where
its corresponding primary codes of maximal length are studied. There, we will show that
simple δ-sequences Γ are the only ones yielding, under certain conditions, a footprint with
only one monomial block (see (5) for the definition). Furthermore, we will use that fact
to compute in some cases and estimate, in the other ones, the minimum distances of these
codes. In fact, for certain values of q, we will give a bound on their minimum distances
which improves the primary Feng-Rao one.
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3.1. Evaluation codes defined by δ-sequences. As an initial example, we mention
that the Reed-Muller code RMq (r, 2) belongs to the family of evaluation codes given by
the δ-sequence {(1, 0) , (1,−1)}. In particular, E ((r, 0)) = RMq (r, 2). Weighted Reed-
Muller codes in two variables are included in the set of codes given by δ-sequences with
two elements. Indeed, if we consider weights 0 < b < a ∈ N, then there exists a δ-sequence
of the type {(a, a′), (b, b′)} whose attached family of codes contains the weighted Reed-
Muller codes with weights a and b. For instance for a = 5 and b = 3, one can use the
δ-sequence {12, 7} in N which gives rise to the δ-sequence {(5, 2), (3, 1)} in Z2.

Throughout this section we will consider a δ-sequence Γ = {γ0, γ1, . . . , γg} whose ν-
vector, when g ≥ 2, is n = (n1, n2, . . . , ng−1). ωΓ will denote the weight function de-
termined by Γ and Q0, Q1, . . . , Qg a sequence of approximates for Γ where, for the sake

of simplicity, λi = 1 in the expression (3). In addition, φ : Fq [X,Y ] → Fq2
q will be the

Fq-algebra morphism given by φ (F ) =
(
F (P1) , F (P2) , . . . , F

(
Pq2
))
, where the Pi’s are

the points in F2
q in some order.

Set A := Fq [Z0, Z1, . . . , Zg] and, when g ≥ 2, consider the set defined by the equalities
in (1):

ZΓ :=

{
Zn1
1 − Za10

0 − Z2, Z
n2
2 − Za20

0 Za21
1 − Z3, . . . , Z

ng−1

g−1 −
g−2∏
i=0

Z
ag−1,i

i − Zg

}
.

Let IΓ be the following ideal of the ring A:

IΓ =

{
{0} if g = 1
⟨ZΓ⟩ if g ≥ 2

.

Denote b = (b0, b1, . . . , bg) ∈ Ng+1
0 , write Zb := Zb0

0 Z
b1
1 · · ·Zbg

g , and define w
(
Zb
)
=∑g

i=0 biγi and the weight of a polynomial H ∈ A, w (H), as the highest weight (with
respect to lexicographic ordering in Z2 with (0, 1) < (1, 0)) of a monomial in the support
of H. Now, if M denotes the set of monomials in A, one can consider on M the weighted
degree ordering <wl defined as M1 <wl M2 if w (M1) < w (M2) or w (M1) = w (M2) and
M1 <l M2, where <l is the lexicographic ordering in M with Z0 <l Z1 <l · · · <l Zg.

With respect to the ordering<wl, ZΓ is the reduced Gröbner basis of IΓ and the footprint
of IΓ is ∆<wl

(IΓ) :=
{
Zb | b ∈ Ωn

}
. So, it is straightforward to check that A and IΓ

satisfy the conditions in Theorem 2.8. Thus, R := A/IΓ has a weight function ρ : R →
SΓ ∪ {−∞} given by ρ (0) = −∞ and ρ (h) = w (H), where h = H + IΓ is the equivalence
class of the polynomial H modulo IΓ. Therefore, the set B :=

{
zb | Zb ∈ ∆<wl

(IΓ)
}
,

where zb := zb00 z
b1
1 · · · zbgg and zi = Zi + I for 0 ≤ i ≤ g, is a basis of R as an Fq-vector

space. Moreover, B is a well-behaving basis of R determined by ρ. Hence, we have that
R = spanFq

{
zb | b ∈ Ωn

}
. Furthermore, the mapping ψ : R → Fq [X,Y ] induced by

ψ (zi) = Qi, 0 ≤ i ≤ g, is an isomorphism of Fq-vector spaces.
F2
q is the variety VFq(IΓ) when g = 1 and, otherwise, it is the set

{(s, t, Q2 (s, t) , . . . , Qg (s, t)) | s, t ∈ Fq} ,

where Q2 (s, t) = tn1 − sa10 and, for 2 ≤ i ≤ g − 1,

Qi+1 (s, t) = (Qi (s, t))
ni − sai0tai1 (Q2 (s, t))

ai2 · · · (Qi−1 (s, t))
ai,i−1 .
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This allows us to set VFq(IΓ) =
{
V1, V2, . . . , Vq2

}
and consider the evaluation morphism

φ̄ : R→ Fq2
q given by

φ̄ (f = F + I) =
(
F (V1) , F (V2) , . . . , F

(
Vq2
))
.

Now, let β =
∑g

i=0 biγi be the unique expression of some fixed element β ∈ SΓ, where

b ∈ Ωn. Denote by zβ the product zb and, using a similar notation for other elements

η ∈ SΓ, define Ē (β) := spanFq
{φ̄ (zη) | SΓ ∋ η ≤ β} , and C̄ (β) := Ē (β)⊥. Then, it is

clear that Ē (β) = E (β), where E (β) is the primary code of maximal length defined by
Γ. That is, the code attached to β and given by the weight function ωΓ determined by
Γ and the former morphism φ. Similarly, C̄ (β) = C (β). Thus, if we define the ideal
IΓ,q := IΓ + ⟨Zq

i − Zi | 0 ≤ i ≤ g⟩ , it happens that ∆ (Fq [X,Y ] , ωΓ, φ) = w (∆<wl
(IΓ,q)),

where ∆<wl
(IΓ,q) is the footprint of IΓ,q with respect to the ordering <wl.

Along this paper, this last set

∆Γ,q := ∆ (Fq [X,Y ] , ωΓ, φ)

will be called the ∆-set of Γ for q. And now, the problem of computing it is reduced
to obtain the reduced Gröbner basis of IΓ,q with respect to <wl and, from it, to get the
weights of the elements in the footprint of IΓ,q. When g = 1, the footprint of IΓ,q =
⟨Zq

0 − Z0, Z
q
1 − Z1⟩ is the set

∆<wl
(IΓ,q) =

{
Zb0
0 Z

b1
1 | 0 ≤ b0, b1 < q

}
.

Hence, the ∆-set of Γ for q is ∆Γ,q = {b0γ0 + b1γ1 | 0 ≤ b0, b1 < q}. We conclude this
section with an example which reflects where the obstruction for the case g > 1 can
appear.

Example 3.1. Let Γ = {γ0, γ1, γ2} be a δ-sequence with ν-vector (n1), where we have
set a10 = a, i.e. n1γ1 = aγ0, and n1 = q = ma + r with m > 0 and 0 ≤ r < a. Suppose
γ1 > γ2 and mγ1 ≥ (a− r + 1) γ0. Then, with the above notations, the reduced Gröbner
basis of IΓ,q with respect to the ordering <wl is

G =
{
(Z1 − Z2)

m+1 − Za−r+1
0 , Zr

0 (Z1 − Z2)
m − Z0, Z

a
0 − Z1 + Z2, Z

q
2 − Z2

}
.

So, ∆<wl
(IΓ,q) =

{
Zt
0Z

u
1Z

v
2 | t < a, u < m, v < q

}
∪
{
Zt
0Z

m
1 Z

v
2 | t < r, v < q

}
and

∆Γ,q = {tγ0 + uγ1 + vγ2 | t < a, u < m, v < q} ∪ {tγ0 +mγ1 + vγ2 | t < r, v < q} .

For any δ-sequence Γ, the footprint of IΓ,q is a union of disjoint monomial blocks, that
is, sets of the form

(5) Bt
s :=

{
Zb | si ≤ bi < ti, 0 ≤ i ≤ g

}
,

where s := (s0, s1, . . . , sg) and t := (t0, t1, . . . , tg) are fixed vectors in Ng+1. When the
footprint only contains a monomial block, good estimations of the parameters of the
corresponding evaluation codes can be given. Next, we are going to introduce a class of
δ-sequences satisfying this property.
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3.2. Evaluation codes defined by simple δ-sequences. In this paragraph we keep
the above notations.

Definition 3.2. A δ-sequence Γ is said to be simple if either g = 1 or otherwise γi =
ni+1γi+1 for 0 ≤ i ≤ g − 2 and γg−1 > γg.

Two direct consequences of Definition 3.2 are:

1) γi =
∏g−1

j=i+1 njγg−1 for 0 ≤ i ≤ g − 2.

2) IΓ =
⟨
Zn1
1 − Z0 − Z2, Z

n2
2 − Z1 − Z3, . . . , Z

ng−1

g−1 − Zg−2 − Zg

⟩
.

Examples of simple δ-sequences are those of the form

Γ = {(n1n2 · · ·ng−1, n1n2 · · ·ng−1) , (n2n3 · · ·ng−1, n2n3 · · ·ng−1) , . . .

. . . , (ng−1, ng−1) , (1, 1) , (1, 0)} ,
where the set {ni}gi=1 contains positive integers ni ≥ 2 but ng > 2. Notice that Γ can be
defined from the δ-sequence in N

Γ∗ = {n1n2 · · ·ng, n2n3 · · ·ng, . . . , ng, 1} .

These sets span the semigroups at infinity of the so-called Abhyankar-Moh-Suzuki curves.
For a start, we study primary codes of maximal length defined by δ-sequences of two

elements. This is the simplest case whose ∆-set has only one monomial block. Consider
β = b0γ0 + b1γ1 ∈ ∆Γ,q, clearly σ (β) = (q − b0) (q − b1). Write

H̄β =
{
(u, v) ∈ N2

0 | u, v < q and uγ0 + vγ1 ≤ β
}
,

and let <R be the lexicographical ordering on N2
0 with (1, 0) <R (0, 1). Then the least value

of the product (q − u) (q − v) where (u, v) runs over H̄β is reached for (U, V ) = max<R H̄β.
Therefore, by Theorem 2.7, d (E (β)) ≥ (q − U) (q − V ).

On the other hand, write Fq = {l0, l1, . . . , lq−1} and consider the polynomial G =∏U−1
i=0 (X − li)

∏V−1
i=0 (Y − li). Clearly φ (G) ∈ E (β) andG has exactly q2−(q − U) (q − V )

zeros in F2
q . Hence, the weight of the codeword φ (G) is (q − U) (q − V ), which proves

d (E (β)) = (q − U) (q − V ) .

The equality µ (β) = (b0 + 1) (b1 + 1) allows us to determine the minimum distance in
the dual case:

d (C (β)) = (U + 1) (V + 1) ,

where (U, V ) = min<R Ĥβ(:=
{
(u, v) ∈ N2

0 | u, v < q and uγ0 + vγ1 > β
}
).

Thus, we have proved the following result.

Proposition 3.3. Let Γ = {γ0, γ1} be a δ-sequence and keep the above notations. For any
β = b0γ0 + b1γ1 ∈ ∆Γ,q, it holds that the minimum distances of the associated maximal
length evaluation codes E(β) and C(β) satisfy:

1) d (E (β)) = (q − U) (q − V ) where (U, V ) = max<R H̄β.

2) d (C (β)) = (U + 1) (V + 1) where (U, V ) = min<R Ĥβ.
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As a consequence, the evaluation codes of maximal length given by δ-sequences of two
elements reach the Feng-Rao bounds in both primary and dual cases. Moreover, every
dual code is a primary one associated with the same δ-sequence. In fact, set ∆Γ,q ={
s1 < s2 < · · · < sq2

}
, where < denotes the ordering on SΓ, and si = bi0γ0 + bi1γ1, then

C (sk) = E
(
sq2−k

)
.

Next, we will show how to adapt the former ideas to codes of maximal length defined
by arbitrary simple δ-sequences. Below, we state that, under certain conditions, simple δ-
sequences are the only ones whose footprint has only one monomial block. In the following,
we will assume that g ≥ 2 and we will stand 0 for the zero-vector andB := (B0, B1, . . . , Bg)

for another different vector, both in Ng+1
0 .

Proposition 3.4. Let Γ = {γ0, γ1, . . . , γg} be a δ-sequence with ν-vector n and such that
γ0 > γ1 > · · · > γg. Suppose that q ≥ max {ni | 1 ≤ i ≤ g − 1}. Then, the footprint of the
ideal IΓ,q, with respect to the ordering <wl, has only one monomial block of the form BB

0

if, and only if, Γ is simple and q a multiple of ni for 1 ≤ i ≤ g − 1.

Proof. Suppose that q is a power of a prime number p and ∆<wl
(IΓ,q) = BB

0 . Then, by
[8, 9] #∆<wl

(IΓ,q) =
∏g

i=0Bi = q2 because IΓ,q is a radical ideal. So Bi is a power of p for
all index i. The set of leading monomials of the elements in the reduced Gröbner basis,

G, of IΓ,q with respect to <wl is
{
ZB0
0 , ZB1

1 , . . . , Z
Bg
g

}
. Set SP (F,G) the S-polynomial of

two polynomials F and G and, for 1 ≤ i ≤ g − 1, define

Si := SP

Zni
i −

i−1∏
j=0

Z
aij
j − Zi+1, Z

q
i − Zi

 = Zq−ni
i

i−1∏
j=0

Z
aij
j + Zi+1

− Zi,

where the aij ’s are those coefficients appearing in the equality (1). Write q = kini + ri
(0 ≤ ri < ni) and → the relation of reduction modulo IΓ,q, then

Si → Zri
i

i−1∏
j=0

Z
aij
j + Zi+1

ki

− Zi.

Let us see that ri = 0 for all i. By contradiction, if we assume ri > 0 then, the leading
monomial of the remainder of Si modulo IΓ,q will yield, via Buchberger’s algorithm, a

polynomial in G whose leading monomial is a product of more than one power Z
bj
j because

not all values aij equal zero. Therefore this leading monomial is different from Z
Bj

j , which
gives the desired contradiction. So ri = 0, which implies that, for 1 ≤ i ≤ g − 1, q is
multiple of ni and ni and ki are powers of p.

Now, S1 → (Za10
0 + Z2)

k1 − Z1 = Zk1a10
0 − Z1 + Zk1

2 and

SP
(
Zk1a10
0 − Z1 + Zk1

2 , Z
q
0 − Z0

)
→ Zs1

0

(
Z1 − Zk1

2

)m1

− Z0,

where we have set q = k1a10m1 + s1 and 0 ≤ s1 < k1a10. Reasoning as in the above
paragraph, s1 = 0 and so a10m1 = n1. Hence a10 is a power of p and, as it is co-prime
with n1 (see (1), again), we have that a10 = 1 and m1 = n1. Then γ0 = n1γ1.
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Let us prove that γ1 = n2γ2. Assume a20 > 0. If a21 = 0, then considering a δ-sequence
in N, Γ∗ = {γ∗i }

g
i=0, that determines Γ and its attached values {ni}gi=0, it happens, on

the one hand, that d3 = n3n4 · · ·ng holds. On the other hand n2γ
∗
2 = a20γ

∗
0 implies

d3 = z n3n4 · · ·ng, where z = gcd (n1n2, n2, a20n1), which is a contradiction because the
values ni are powers of p. Then a20 > 0 implies a21 > 0 which cannot happen by the
monomial structure of ∆<wl

(IΓ,q). So a20 = 0 and a similar argument to the previous
one, with S2 instead of S1, proves a21 = 1 and thus γ1 = n2γ2. Finally, by extending
inductively this reasoning for 2 ≤ i ≤ g − 1, we get

ai0 = ai1 = · · · = ai,i−2 = 0 and ai,i−1 = 1,

and this proves γi = ni+1γi+1 for 0 ≤ i ≤ g − 2.
We have just shown an implication. For the converse, we will apply induction on g. For

g = 2, with the above notation and taking into account that

SP (Zn1
1 − Z0 − Z2, Z

q
1 − Z1) → Zk1

0 − Z1 + Zk1
2

and

SP
(
Zk1
0 − Z1 + Zk1

2 , Z
q
0 − Z0

)
→ Zn1

1 − Zq
2 − Z0 =

= (Zn1
1 − Z0 − Z2)− (Zq

2 − Z2) → 0,

it happens that the reduced Gröbner basis of IΓ,q with respect to <wl is

G =
{
Zk1
0 − Z1 + Zk1

2 , Z
n1
1 − Z0 − Z2, Z

q
2 − Z2

}
,

hence ∆<wl
(IΓ,q) has only one monomial block with B0 = k1, B1 = n1 and B2 = q.

Now, let Γ = {γ0, . . . , γg} be a simple δ-sequence as in the statement and consider the
δ-sequence Γ′ = {γ1, γ2, . . . , γg} (see Lemma 2.5). By induction hypothesis, ∆<wl

(
IΓ′,q

)
contains only one monomial block. Let G′ be the reduced Gröbner basis of IΓ′,q with
respect to the corresponding ordering and suppose that the set of leading monomials of

G′ is
{
ZB1
1 , ZB2

2 , . . . , Z
Bg
g

}
, with B1B2 · · ·Bg = q2. It is clear that

IΓ,q =
⟨
G′ ∪ {Zn1

1 − Z0 − Z2, Z
q
0 − Z0}

⟩
.

Let T = ZB1
1 +H be the polynomial of G′ with leading monomial ZB1

1 and consider the
S-polynomial S := SP (Zn1

1 − Z0 − Z2, T ).
Suppose that n1 ≤ B1 and write B1 = k n1, where k is a power of p. Then S →

Zk
0 + Zk

2 +H. Moreover,

SP
(
Zk
0 + Zk

2 +H,Zq
0 − Z0

)
→ Zq

2 +Hm + Z0 →
(
Zk
0 + Zk

2 +H
)m

− (Zq
0 − Z0) → 0,

where q = k m. Hence, G =
{
Zk
0 + Zk

2 +H,Zn1
1 − Z0 − Z2

}
∪ (G′ − {T}) and, thus, the

set of leading monomials of G is
{
Zk
0 , Z

n1
1 , ZB2

2 , . . . , Z
Bg
g

}
.

Otherwise, n1 > B1, and so S → Z0+Z2+H
l, where n1 = l B1. The leading monomial

of the polynomial Z0 + Z2 +H l is Z0 because

w (Z0) = γ0 = l B1γ1 > l w (H) = w
(
H l
)
.



EVALUATION CODES GIVEN BY SIMPLE δ-SEQUENCES 15

Moreover,

SP
(
Z0 + Z2 +H l, Zq

0 − Z0

)
→ Zq

2 +Hql + Z0 → (Zq
2 − Z2) +

(
Z0 + Z2 +H l

)
→ 0.

Therefore, G =
{
Z0 + Z2 +H l

}
∪ G′ and the set of leading monomials of G is{
Z0, Z

B1
1 , ZB2

2 , . . . , Z
Bg
g

}
,

which concludes the proof. �

As a consequence of the above proof, we state the following algorithm. It computes
the vector B that determines the footprint ∆<wl

(IΓ,q) of the ideal IΓ,q given by a simple
δ-sequence Γ. Γ must satisfy that any coordinate ni of its ν-vector divides q.

Algorithm 1.
Input: q, g, n1, . . . , ng−1.

Bg = q,
Bg−1 = ng−1,
i = g − 2,
While i ≥ 1 do:

If niBi+1 · · ·Bg−1 ≤ q then Bi = ni
else Bi = q/ (Bi+1 · · ·Bg−1),
i = i− 1,

B0 = q/ (B1 · · ·Bg−1).

Output: B0, B1, . . . , Bg.

The following result will be useful further on.

Lemma 3.5. Let Γ = {γ0, γ1, . . . , γg} be a simple δ-sequence whose ν-vector is n. Suppose

that q =
∏g−1

i=0 ni with n0 ≥ 1. Then:

(1) The reduced Gröbner basis of the ideal IΓ,q with respect to the ordering <wl is

G =
{
Zn0
0 − Zg−1 + Zn0

2 + Zn0n1
3 + · · ·+ Z

n0n1···ng−2
g , Zn1

1 − Z0 − Z2,

Zn2
2 − Z1 − Z3, . . . , Z

ng−1

g−1 − Zg−2 − Zg, Z
q
g − Zg

}
.

(2) The reduced Gröbner basis, with respect to <wl, of the ideal of the ring of polyno-
mials Fq [Z0, Z1, . . . , Zg]:

J :=
⟨
Zn1
1 − Z0, Z

n2
2 − Z1, . . . , Z

ng−1

g−1 − Zg−2, Z
q
0 − Z0, . . . , Z

q
g − Zg

⟩
is {

Zn0
0 − Zg−1, Z

n1
1 − Z0, Z

n2
2 − Z1, . . . , Z

ng−1

g−1 − Zg−2, Z
q
g − Zg

}
.

Proof. We reason by induction on g to prove Item (1). The case g = 1 is obvious and the
case g = 2 was demonstrated in the proof of Proposition 3.4. So, suppose that Item (1)
holds for g = k − 1 ≥ 2. Set

IΓ,q =
⟨
Zn1
1 − Z0 − Z2, . . . , Z

nk−1

k−1 − Zk−2 − Zk, Z
q
0 − Z0, . . . , Z

q
k − Zk

⟩
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the ideal given by the simple δ-sequence Γ = {γ0, γ1, . . . , γk}. Then, by Lemma 2.5,

JΓ′,q =
⟨
Zn2
2 − Z1 − Z3, . . . , Z

nk−1

k−1 − Zk−2 − Zk, Z
q
1 − Z1, . . . , Z

q
k − Zk

⟩
is the ideal determined by the simple δ-sequence Γ′ = {γ1, γ2, . . . , γk}. By induction
hypothesis, the reduced Gröbner basis of JΓ′,q, with respect to the ordering <wl, is

B =
{
Zn0n1
1 − Zk−1 + Zn0n1

3 + · · ·+ Z
n0n1···nk−2

k , Zn2
2 − Z1 − Z3, . . .

Z
nk−1

k−1 − Zk−2 − Zk, Z
q
k − Zk

}
,

hence, IΓ,q = ⟨{Zn1
1 − Z0 − Z2, Z

q
0 − Z0} ∪ B⟩. Now, consider the following S-polynomials

and reduction modulo IΓ,q:

SP
(
Zn1
1 − Z0 − Z2, Z

n0n1
1 − Zk−1 + Zn0n1

3 + · · ·+ Z
n0n1···nk−2

k

)
=

Zn0
0 − Zk−1 + Zn0

2 + Zn0n1
3 + · · ·+ Z

n0n1···nk−2

k ,

SP
(
Zn0
0 − Zk−1 + Zn0

2 + Zn0n1
3 + · · ·+ Z

n0n1···nk−2

k , Zq
0 − Z0

)
=(

Zn0
2 + Zn0n1

3 + · · ·+ Z
n0n1···nk−2

k − Zk−1

)n0n1···nk−1 + Z0 →(
Z

n0nk−1

2 + Z
n0n1nk−1

3 + · · ·+ Z
n0n1···nk−3nk−1

k−1 − Zk−2

)n0n1···nk−2 + Z0.

Iterating the procedure, we get the S-polynomial and the reduction(
Z

n0n2···nk−1

2 − Z1

)n1 + Z0 = Zq
2 − Zn1

1 + Z0 → 0,

which proves Item (1) by applying Buchberger’s algorithm.
Now we prove Item (2). We also reason by induction on g. The case g = 1 is also clear.

So, we assume that it holds for g = k − 1 ≥ 1. By induction hypothesis, the reduced
Gröbner basis of the ideal

⟨Zn1
1 − Z0, Z

n2
2 − Z1, . . . , Z

nk−1

k−1 − Zk−2, Z
q
0 − Z0, . . . , Z

q
k − Zk⟩

is the reduced Gröbner basis of

⟨Zn1
1 − Z0, Z

q
0 − Z0, Z

n0n1
1 − Zk−1, Z

n2
2 − Z1, . . . , Z

nk−1

k−1 − Zk−2, Z
q
k − Zk⟩.

Then, consider the following S-polynomials and reductions:

SP (Zn1
1 − Z0, Z

n0n1
1 − Zk−1) = Z0Z

n0n1−n1
1 − Zk−1 → Zn0

0 − Zk−1,

where we have divided repeatedly by Zn1
1 − Z0,

SP (Zn0
0 − Zk−1, Z

q
0 − Z0) = Zq−n0

0 Zk−1 − Z0 → Z
n1n2···nk−1

k−1 − Z0,

after dividing repeatedly by Zn0
0 −Zk−1. Then, from the above right hand side, we obtain

the reduction → Z
n1n2···nk−2

k−2 − Z0 (dividing by Z
nk−1

k−1 − Zk−2) and, after several steps, a

similar iterative procedure gives → Zn1
1 − Z0 → 0, which concludes the proof. �

Proposition 3.4 and Algorithm 1 allow us to get Feng-Rao bounds for evaluation codes
defined by simple δ-sequences. Let us see it.
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Proposition 3.6. Let Γ = {γ0, γ1, . . . , γg} be a simple δ-sequence whose ν-vector is n.
Suppose that the prime power q is a multiple of ni for 1 ≤ i ≤ g−1. Then, the ∆-set ∆Γ,q

equals {
∑g

i=0 biγi | 0 ≤ bi < Bi for 0 ≤ i ≤ g}, where the values Bi, 0 ≤ i ≤ g, are the
exponents computed by Algorithm 1. Moreover, let β ∈ ∆Γ,q, then the minimum distances
of the associated maximal length evaluation codes E(β) and C(β) satisfy:

d (E (β)) ≥ min

{
g∏

i=0

(Bi − bi) | η =

g∑
i=0

biγi ∈ ∆(Fq [X,Y ] , ω, φ) and η ≤ β

}
and

d (C (β)) ≥ min

{
g∏

i=0

(bi + 1) | η =

g∑
i=0

biγi ∈ ∆(Fq [X,Y ] , ω, φ) and η > β

}
.

We have seen that these bounds are reached when g = 1, however, in the general case,
it is not true. The main goal in this section is to see that, for large enough values of q,
the primary Feng-Rao (or Andersen-Geil) bound of the primary codes defined by simple
δ-sequences can be improved. Before to state it, we need some consequences of the notion
of simple δ-sequence and, to show them, we will use the following result.

Lemma 3.7. Consider N1, N2, . . . , Nt−1 ∈ N and r ∈ N0. Then, r can be expressed in a
unique way as

r = r1 + r2N1 + r3N1N2 + · · ·+ rt−1N1N2 · · ·Nt−2 + rtN1N2 · · ·Nt−1,

where 0 ≤ ri < Ni for 1 ≤ i ≤ t− 1.

Proof. The proof follows after dividing (Euclidean division) r by N1 and the successively
obtained quotients by the corresponding Ni, 2 ≤ i ≤ t− 1. �

In the sequel, the previous stated equality will be expressed as ψ(N1,N2,...,Nt−1)(r) =

(r1, r2, . . . , rt) and ri = ψi
(N1,N2,...,Nt−1)

(r), 1 ≤ i ≤ t.

Proposition 3.8. Let Γ be as in Proposition 3.6. Then Λ = {γg−1, γg} is a δ-sequence,

and ∆Γ,q = ∆Λ,q whenever q ≥
∏g−1

i=1 ni.

Proof. By Lemma 2.5, it is clear that Λ is a δ-sequence. Thus, it suffices to see that
∆Λ,q ⊆ ∆Γ,q because both sets have the same cardinality. Indeed, let β = bγg−1 + eγg ∈
∆Λ,q and consider the unique vector ψ(ng−1,...,n2,n1)(b) = (bg−1, . . . , b1, b0) attached to b by
Lemma 3.7. Here, bi < ni for 1 ≤ i ≤ g − 1 and b0 < n0 holds as a consequence of the
facts b < q and

∏g−1
i=0 ni = q. By using item 1) given below Definition 3.2, it happens that

β =
∑g

i=0 biγi ∈ ∆Γ,q, where bg = e, which finishes the proof. �

Again, let Γ = {γ0, γ1, . . . , γg} be a simple δ-sequence with ν vector n. Recall Lemma

3.7 and for u ∈ N0, set ui := ψg−i
(ng−1,...,n2,n1)

(u), 0 ≤ i ≤ g − 1. Then, u = u0
∏g−1

i=1 ni +

u1
∏g−1

i=2 ni + · · ·+ ug−2ng−1 + ug−1, with ui < ni for 1 ≤ i ≤ g − 1. Now, we are ready to
state and prove our main results.
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Theorem 3.9. Let Γ, n and u be as above. Suppose that q is a multiple of ni for 1 ≤
i ≤ g − 1 and q ≥

∏g−1
i=1 ni. Let β ∈ ∆Γ,q. Then, the minimum distance of the associated

maximal length primary code E(β) satisfies:

d (E (β)) ≥ (q − U) (q − V ) ,

where (U, V ) = max<R H̄β and

H̄β :=

{
(u, v) | η =

(
g−1∑
i=0

uiγi

)
+ vγg ∈ ∆Γ,q, η ≤ β

}
.

Proof. Proposition 3.8 and its proof show that Λ = {γg−1, γg} is a δ-sequence such that
∆Λ,q = ∆Γ,q and, moreover,

H̄β = {(u, v) | η = uγg−1 + vγg ∈ ∆Λ,q, η ≤ β} .

Denote by φΓ : Fq[X,Y ] → Fq2
q the map giving the family of codes E(β) and set {Qi}gi=0

the approximates defined by Γ. Pick a nonzero word c = φΓ (F ), F = F (X,Y ) ∈ Fq[X,Y ]
and regard F as a polynomial in Fq [Q0, Q1, . . . , Qg], that is,

F (X,Y ) = F (Q0, Q1, . . . , Qg) =
∑

η=
∑g

i=0 siγi∈∆Γ,q , η≤β

ληQ
s0
0 Q

s1
1 · · ·Qsg

g .

Consider the polynomial

G (X,Y ) = F
(
X

∏g−1
i=1 ni , X

∏g−1
i=2 ni , . . . , Xng−2ng−1 , Xng−1 , X, Y

)
.

If we denote {EΛ(β)} the family of codes of maximal length given by the δ-sequence Λ
with corresponding weight function ωΛ, then it holds

ωΛ (G) ≤

(
b0

g−1∏
i=1

ni + b1

g−1∏
i=2

ni + · · ·+ bg−1

)
γg−1 + bgγg = β.

So, e = φΓ(G) ∈ EΛ(β).
Let ZF (respectively, ZG) be the set of zeros of the polynomial F (respectively, G) in

F2
q . Consider the ideals of the ring Fq [Q0, Q1, . . . , Qg]:

I =
⟨
F (Q0, Q1, . . . , Qg) , Q

n1
1 −Q0 −Q2, Q

n2
2 −Q1 −Q3, . . . , Q

ng−1

g−1 −Qg−2 −Qg

⟩
and

J =
⟨
F (Q0, Q1, . . . , Qg) , Q

n1
1 −Q0, Q

n2
2 −Q1, . . . , Q

ng−1

g−1 −Qg−2

⟩
.

Then, ZF =
{
(u0, u1) | (u0, u1, . . . , ug) ∈ VFq (I)

}
and

ZG =
{
(ug−1, ug) | (u0, u1, . . . , ug) ∈ VFq (J)

}
.

Hence, #ZF = #VFq (I) and #ZG = #VFq (J).
Now, set Iq = I +Rq and Jq = J +Rq, where Rq := ⟨Qq

0 −Q0, Q
q
1 −Q1, . . . , Q

q
g −Qg⟩.

Thus #ZF = #VFq (I) = #VFq (Iq) = #∆< (Iq) and an analogous equality happens for J
and Jq, < being any monomial ordering in Fq [Q0, Q1, . . . , Qg].
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Consider the reduced Gröbner bases of Iq and Jq with respect to the weighted degree

lexicographic ordering <=<wl with w (Qi) = γi, for 0 ≤ i ≤ g. Write q =
∏g−1

i=0 ni, where
n0 ≥ 1. By Lemma 3.5, we have that

Iq =
⟨
F (Q0, Q1, . . . , Qg) , Q

n0
0 −Qg−1 +Qn0

2 +Qn0n1
3 + · · ·+Q

n0n1···ng−2
g ,

Qn1
1 −Q0 −Q2, . . . , Q

ng−1

g−1 −Qg−2 −Qg, Q
q
g −Qg

⟩
,

and

Jq =
⟨
F (Q0, Q1, . . . , Qg) , Q

n0
0 −Qg−1, Q

n1
1 −Q0, . . . , Q

ng−1

g−1 −Qg−2, Q
q
g −Qg

⟩
.

Notice that for every generator above showed S of the ideal Iq (respectively, Jq) there
exists a unique generator T of Jq (respectively, Iq) such that S = T +H, where w (S) =
w (T ) > w (H). When applying the Buchberger’s algorithm in order to compute the
reduced Gröbner bases of Iq and Jq with respect to <wl, we will only need to consider the
S-polynomials derived from F . By the above arguments, every S-polynomial of generators
of Iq (respectively, Jq) contains, as a summand, the S-polynomial of the corresponding
generators of Jq (respectively, Iq). Inductively we get that if S1 and S2 are elements from
the set obtained in the kth iteration of the Buchberger’s algorithm for Iq, then there exist
elements T1 and T2 taken from the set obtained in the kth iteration of the Buchberger’s
algorithm for Jq such that S1 = T1+H1 and S2 = T2+H2, where w (Si) = w (Ti) > w (Hi)
for i = 1, 2. Thus, SP (S1, S2) = SP (T1, T2) + H, where H depends on H1 and H2.
Moreover, SP (S1, S2) → 0 in the kth iteration of the Buchberger’s algorithm for Iq if,
and only if, SP (T1, T2) → 0 in this iteration of the Buchberger’s algorithm for Jq. So,
the reduced Gröbner bases of Iq and Jq with respect to <wl, have the same size and their
sets of leading monomials are equal. Therefore, ∆<wl

(Iq) = ∆<wl
(Jq) and #ZF = #ZG.

Hence, we have that

wt (c) = q2 −#ZF = q2 −#ZG = wt (e) ≥ (q − U) (q − V ) ,

where the inequality holds by Proposition 3.3 and then, d (E (β)) ≥ (q − U) (q − V ). �

Theorem 3.10. The bound on the minimum distance of the primary codes given in The-
orem 3.9 is at least as good as the primary Feng-Rao one.

Proof. The case when g = 1 is clear because, by Proposition 3.3, both bounds are equal
and they are reached.

Assume g ≥ 2 and let β ∈ ∆Γ,q and (U, V ) = max<R H̄β be. Without loss of

generality, we can suppose q =
∏g−1

i=0 ni, where n0 ≥ 1. Recall that q is a prime
power and this is an important fact (see the proof of Proposition 3.4). By Theorem
3.9, d (E (β)) ≥ (q − U) (q − V ). Write ψ(ng−1,...,n2,n1)(U) = (ug−1, . . . , u1, u0) by Lemma

3.7. Then
∑g

i=0 uiγi ≤ β, where ug = V . To prove the result, it suffices to see that

q − U ≥
∏g−1

i=0 (ni − ui), because then

(q − U) (q − V ) ≥
g∏

i=0

(ni − ui) ≥



20 C. GALINDO AND R. PÉREZ-CASALES

≥ min

{
g∏

i=0

(ni − si) | η =

g∑
i=0

siγi ∈ ∆Γ,q and η ≤ β

}
,

which concludes the proof.
Let us show, by induction, the mentioned inequality. For a start, when g = 2 one gets

(n0 − u0) (n1 − u1) = n0n1 − u0n1 − (n0 − u0)u1 ≤ n0n1 − u0n1 − u1 = q − U.

Now, consider an index 2 ≤ k < g − 1 and set

Wk =

k∏
i=0

ni − u0

k∏
i=1

ni − · · · − uk−1nk − uk.

By induction hypothesis, suppose that
∏k

i=0 (ni − ui) ≤ q − U =Wk holds, then

k+1∏
i=0

(ni − ui) ≤
k+1∏
i=0

ni − u0

k+1∏
i=1

ni − · · · − uknk+1 −Wkuk+1 ≤

≤
k+1∏
i=0

ni − u0

k+1∏
i=1

ni − u1

k+1∏
i=2

ni · · · − uknk+1 − uk+1,

which concludes the proof. �
Remark 3.11. In this remark we show that our bound is reached when g = 2. Keep
the above notations and consider a simple δ-sequence Γ = {γ0, γ1, γ2} with γ0 = n1γ1 and
q = n0n1, n0 ≥ 1. Let β = b0γ0 + b1γ1 + b2γ2, with bi < ni for 0 ≤ i ≤ 2 and n2 = q.
Write Fq = {l0, l1, . . . , lq−1} and consider the polynomial

F =

U−1∏
i=0

(Y − li) ·
V−1∏
i=0

(Y n1 −X − li).

Then, our assertion is proved because φΓ (F ) ∈ E (β) and the set of zeros of F in F2
q is

{(li, lj) | 0 ≤ i ≤ q − 1, 0 ≤ j ≤ U − 1} ∪
{(
li + ln1

j , lj

)
| 0 ≤ i ≤ V − 1, U ≤ j ≤ q − 1

}
,

whose cardinality is qU + qV − UV .

We end this section with an example which shows that our bound improves the primary
Feng-Rao one in some cases.

Example 3.12. Consider the δ-sequence Γ = {(64, 0) , (8, 0) , (1, 0) , (1,−1)}. According
to our notation set Λ = {(1, 0) , (1,−1)}. The ν-vector of Γ is (8, 8). Write q = 256 and
pick β = (140,−128) ∈ ∆Γ,q. Since

β = 0 · (64, 0) + 1 · (8, 0) + 4 · (1, 0) + 128 · (1,−1) ,

the primary Feng-Rao bound of the code E (β) is less than or equal to

(4− 0) (8− 1) (8− 4) (256− 128) = 14336.

Finally, the fact that β can be expressed as β = 12 · (1, 0) + 128 · (1,−1) and the equality
(0, 140) = max<R H̄β show that the bound on the minimum distance of E (β) in Theorem
3.9 is (256− 0) (256− 140) = 29696.
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4. Parameters

We devote this section to the study of the performance of families of primary codes of
maximal length defined by simple δ-sequences.

Firstly, we are going to compare the behavior of those families defined by δ-sequences
of two elements. We will see that G = {(1, 0) , (1,−1)} provides the best one. Fix
a field Fq and consider a δ-sequence Γ = {γ0 = (s0, s1) , γ1 = (t0, t1)}. Write ∆Γ,q ={
α1, α2, . . . , αq2

}
with αi < αi+1 for 1 ≤ i ≤ q2 − 1 and set EΓ =

{
E (αi) | 1 ≤ i ≤ q2

}
the family of primary codes (of maximal length) determined by Γ. Clearly, the sequence

{d(E(αi))}q
2

i=1 is decreasing and, as a consequence of Proposition 3.3, the jumps in this
sequence occur for elements of the form Uγ0 + V γ1 ∈ ∆Γ,q, where (U, V ) = max<R H̄α,
for some α ∈ ∆Γ,q. Thus, the mentioned jumping set is

ΛΓ,q = {βb+c+1 = bγ0 + cγ1 | (b, c) ∈ L} ,
where L = {(0, i) | 0 ≤ i ≤ q−1}∪{(i, q−1) | 1 ≤ i ≤ q−1}. Let EΓ1 , EΓ2 be two families
of primary codes corresponding to the δ-sequences Γ1 = {γ10, γ11} and Γ2 = {γ20, γ21},
then the minimum distance of the codes E (bγ10 + cγ11) ∈ EΓ1 and E (bγ20 + cγ21) ∈ EΓ2 ,
(b, c) ∈ L, is equal to (q − b) (q − c). So, to compare these families, we say that EΓ1 is
better than or equal to EΓ2 if dimE (bγ10 + cγ11) ≥ dimE (bγ20 + cγ21) for all (b, c) ∈ L.

Let us see what happens with these dimensions. On the one hand, suppose that β =
βk+1 = kγ1. The dimension of E (β) is the number of pairs (x, y) ∈ N2

0, with 0 ≤ x, y < q,
such that xγ0 + yγ1 ≤ kγ1. This number coincides with the cardinality of the set

{(x, y) | x < t0 (k − y) /s0, y < k} ∪ {(x, y) | x = t0 (k − y) /s0, y < k} ∪ {(0, k)} ,
except when t0/s0 > t1/s1, in which case the above second set is empty. On the other
hand, when β = βk+q = kγ0+(q − 1) γ1, the dimension of E (β) is equal to the cardinality
of the set

{(x, y) | x < k, y ≤ q − 1} ∪ {(x, y) | x = k, y ≤ q − 1}∪
∪{(x, y) | x > k, y ≤ q − 1− s0 (x− k) /t0} ,

except when t0/s0 > t1/s1. In this last case, the last set must be defined by the inequality
y < q−1−s0 (x− k) /t0. This proves our assertion since the best family of codes happens
with t0/s0 = 1 and G is the unique δ-sequence with this ratio. To illustrate this fact,
in Figure 1 we plot the performances of the relative parameters of the primary codes of
maximal length defined by the δ-sequences Γ1 = {(1, 0) , (1,−1)}, Γ2 = {(11, 4) , (3, 1)}
and Γ3 = {(5, 1) , (1, 0)}, for q = 256. As usual, [n, k, d] stands for the parameters, length,
dimension and distance of the codes.

We conclude this study of the case of δ-sequences with two elements by recalling that
the Reed-Muller code RMq(r, 2) coincides with the evaluation code E((r, 0)) defined by
the δ-sequence G. In fact,

E((r, 0)) = spanFq

{
φ
(
Qb0

0 Q
b1
1

)
| b0(1, 0) + b1(1,−1) ≤ (r, 0)

}
,

where φ is the evaluation at all points in F2
q . Since Q0 = X and Q1 = Y , we evaluate

polynomials in X and Y of total degree less than or equal to r.
For sufficiently large values of q, the proof of Theorem 3.9 suggests that the families of

primary codes of maximal length defined by δ-sequences of two elements can be improved
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Figure 1. Relative parameters of the codes E(β) over F256, defined in
Section 3, and given by the δ-sequences Γ1, Γ2 and Γ3

with families associated to larger simple δ-sequences. Since G = {(1, 0) , (1,−1)} gives the
best family, we conclude that to get better families of codes of maximal length, one should
consider δ-sequences with the form

Γ = {(a0, 0) , (a1, 0) , . . . , (ag−2, 0) , (1, 0) , (1,−1)} ,

where aj =
∏g−1

i=j+1 ni and ni > 1 for 1 ≤ i ≤ g − 1. Moreover, the primary Feng-Rao
bound of some codes given by δ-sequences Γ as above is rather improved by the bound we
gave in the previous section. As a complement of this information, we consider the family
of evaluation codes of maximal length given by the simple δ-sequence in Example 3.12 for
q = 256 and, in Figure 2, we plot the estimated relative parameters determined by Theorem
3.9 (continuous line) and those given by the primary Feng-Rao bound (discontinuous line).

To finish our study of primary codes, we give a table, Table 1, containing the parameters
of some good codes given by δ-sequences. Theorem 3.9 shows that their distances are larger
than or equal to 4. According to [45], all these codes have the best known parameters.
Codes with Feng-Rao distance equal to 4 and the same remaining parameters can be
obtained with the δ-sequence G and they can be efficiently decoded by [27]. Therefore,
we have described codes that constitute an improvement with respect to the previously
known.

Table 1. Some good decodable codes

Field δ-sequence Primary Code n k d ≥
F9 {(3, 0), (1, 0), (1,−1)} E((13,−5)) 81 75 4
F16 {(8, 0), (2, 0), (1, 0), (1,−1)} E((27,−12)) 256 250 4
F25 {(5, 0), (1, 0), (1,−1)} E((45,−21)) 625 619 4
F32 {(16, 0), (2, 0), (1, 0), (1,−1)} E((59,−28)) 1024 1018 4
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Figure 2. Relative parameters of the codes E(β) over F256, defined by the
δ sequence Γ given in Example 3.12, according to the bound in Theorem
3.9 and the Feng-Rao bound

Next, we study the case of improved codes.
Consider the polynomial ringR = Fq[X,Y ] and its weight function defined by the graded

lexicographical order on the monomials with Y < X. Then the families of codes {C(q2 −
l)}q

2−1
l=0 and {Cφ(q

2−l)}q
2−1

l=0 defined in Section 2.3 constitute the so-called hyperbolic codes
in two variables. These codes (in finitely many variables) were introduced in [42] and also
in [47] with the name of hyperbolic cascaded Reed-Solomon codes (see also [48]). From

now on, we will use this name for the codes in the family {Cφ(q
2 − l)}q

2−1
l=0 . Notice that

there is not an hyperbolic code for each possible dimension. It is not hard to show that
the improved dual code C̃(l), 0 < l ≤ q2, for the δ-sequence G coincides with Cφ(l). In
addition, reasoning as in [23], the equality of primary and dual improved evaluation codes

given by G can be proved (see also [5]) and also that l is the actual distance of Ẽ(l).
The δ-sequences with two elements determine the same family of improved evaluation

codes of maximal length Ẽ (l) for 0 < l ≤ q2. The dimension of the code Ẽ (l) equals the
number of solutions (b, c) ∈ N2

0 of the inequality (q − b) (q − c) ≥ l, where b, c < q. And
this number is equal to

(6) kl =

⌊(q2−l)/q⌋∑
b=0

⌊
q2 − bq − l

q − b

⌋+

⌊
q2 − l

q

⌋
+ 1.

In fact, the inequality (q − b) (q − c) ≥ l is equivalent to c ≤ (q2 − bq − l)/(q − b) and,
then, the first summand of the sum in (6) determines the number of solutions c, 1 ≤ c < q,
of the previous inequality, where b runs over all possible values, 0 ≤ b ≤ q2 − l/q. The

summand
⌊
q2−l
q

⌋
+1 corresponds to the number of solutions where c = 0. As a consequence,
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Figure 3. Relative parameters for improved codes Ẽ(l) and primary codes
E(β) over F256 given by the δ-sequence G = {(1, 0), (1,−1)}

kl ≥ (q2 − l + q)− lHq, where Hq =
∑q

j=1 (1/j). Taking into account Theorem 2.7,

kl
q2

+
l

q2
Hq ≥ 1 +

q − l

q2
,

where kl/q
2 and l/q2 are the relative parameters of the improved evaluation codes Ẽ (l). In

Figure 3, we contrast the performance of the family of improved primary codes (continuous
line) and that of the family of primary codes defined by the δ-sequence {(1, 0) , (1,−1)}
(discontinuous line). In both cases, we are speaking of maximal length codes and our field

is F256. Note that the family {Ẽ(l)}l≤q2 behaves like that of hyperbolic codes.
Now consider a simple δ-sequence Γ with ν-vector n that satisfies the conditions in

Theorem 3.9. Then, the family of improved codes of maximal length given by Γ is

Ẽ (l) = spanFq

{
φ
(
Qb0

0 Q
b1
1 · · ·Qbg

g

)
|

g∏
i=0

(ni − bi) ≥ l with bi < ni

}
,

for 1 ≤ l ≤ q2, where q =
∏g−1

i=0 ni = ng and {Qi}gi=0 is the sequence of approximates for
Γ. Therefore, the best performances happen for δ-sequences of two elements because the
number of solutions of the inequality

∏g
i=0 (ni − bi) ≥ l decreases when g increases.

The bound in Theorem 3.9 suggests the following definition for what we call δ-improved
codes.

Definition 4.1. Let Γ = {γi}gi=0 a simple δ-sequence whose ν-vector is n = (ni)
g−1
i=1 . The

δ-improved primary evaluation l-code, 1 ≤ l ≤ q2, of maximal length is defined as

Eδ(l) := spanFq

{
φ

(
g∏

i=0

Qbi
i

)
| τ

(
g∑

i=0

biγi

)
≥ l

}
,
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Figure 4. Relative parameters of δ-improved and improved codes over
F256 given by the δ-sequence in Example 3.12

where {Qi}gi=0 is a family of approximates and

τ

(
g∑

i=0

biγi

)
:=

q − g−2∑
i=0

(bi

g−1∏
j=i+1

nj)− bg−1

 (q − bg)

is derived as the bound in Theorem 3.9.

Set β =
∑g

i=0 biγi ∈ ∆Γ,q and such that σ(β) =
∏g

i=0(ni − bi) ≥ l. The inequality

τ(β) ≥ σ(β) holds by Theorem 3.10 and so Ẽ(l) ⊂ Eδ(l) for all index l. Therefore,

dim Ẽ(l) ≤ dim Eδ(l). Consider now a nonzero element c in Eδ(l), then c = φ(F ) for
some polynomial

F (X,Y ) =
∑

η=
∑g

i=0 siγi∈∆Γ,q , τ(η)≥l

ληQ
s0
0 Q

s1
1 · · ·Qsg

g .

Modifying F to get a polynomial G(X,Y ) as in the proof of Theorem 3.9, one obtains 0 ̸=
e = φ(G) ∈ Ẽ(l) which proves the following sequence of inequalities wt (c) ≥ wt (e) ≥ l.
As a consequence, we have proved the following result.

Proposition 4.2. With the above notations and for any prescribed distance l (1 ≤ l ≤ q2),

the inclusion of codes Ẽ(l) ⊂ Eδ(l) holds and the minimum distance of the δ-improved
codes satisfies d

(
Eδ(l)

)
≥ l.

The above result proves that the performance of the family of δ-improved primary codes
is better than that of improved primary ones. Figure 4 shows the curves of (estimated) rel-
ative parameters for δ-improved codes (continuous line) and improved ones (discontinuous
line) corresponding to the field F256 and the δ-sequence in Example 3.12.

5. Coset bounds

We conclude this paper with a short section devoted to give coset bounds for codes
defined by simple δ-sequences. To do it, we will use some ideas of the proof of Theorem
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3.9. One of the main motivations for studying coset bounds is their relation with secret
sharing schemes (SSSs) [36]. With a SSS, one desires encode a secret into a family of
information segments called shares but only certain subfamilies can determine the secret.
These subfamilies are called the access structure of the SSS. Elements in the access struc-
ture are the so-called qualified subsets. Obviously, unqualified subsets are those which are
not in the access structure. It seems that McEliece and Sarwate in [44] were the first
who gave a relation between linear codes and SSSs by relating the scheme in [54] with
Reed-Solomon codes. Recently, Duursma and Park [10] have given a construction of SSSs
considering linear codes E1 ⊂ E of length n such that dimE/E1 = 1. The extension of
codes E1 ⊂ E corresponds an extension of dual codes (E⊥ :=)D ⊂ D1(:= E⊥

1 ) whose
difference set provides the shares for the secret. This one is an element in the base field
Fq. The qualified and unqualified subsets of this SSS are said to be for D1/D. The main
result for our purposes is the following one. It can be found in [10, Corollary 1.7].

Proposition 5.1. The smallest qualified subset for D1/D is of size d(E/E1) and the
largest unqualified subset for D1/D is of size n − d(D1/D), where for a inclusion of
codes C ′ ⊂ C of codimension 1, d(C/C ′) denotes its minimum distance which is equal
to min {d(x, 0) | x ∈ C, x ̸∈ C ′}.

Returning to codes defined by δ-sequences, consider one of them Γ with ν-vector n and
set {E(β)}β∈∆Γ,q

the family of primary evaluation codes of maximal length that provides.
Denote by σ the function defined in Section 2.3 and by τ that introduced in Definition
4.1.

Theorem 5.2. With the above notations and for any element β ∈ ∆Γ,q, it holds that
d(E(β)/E(β−)) ≥ τ(β), where β− = max {α ∈ ∆Γ,q | α < β}.

Proof. Set ∆Γ,q = {α1 < α2 < · · · < αq2}, β = αt and β− = αt−1. Denote {Fαj}
q2

j=1

the set of monomials in the elements {Qi}gi=0 with weights αj whose evaluation gives
generating vectors for the codes. Pick a nonzero element c = φ(F ) in E(αt) which is
not in E(αt−1). Write M(αt) = {αj1 , αj2 , . . . , αjσ(β)

} the set defined in Section 2.3. It is

clear that for each r, 1 ≤ r ≤ σ(β), there exists αkr ∈ ∆Γ,q satisfying αjr = αkr + αt and
therefore the vectors in the set {φ(F ) ∗ φ(Fαkr

)} are linearly independent (recall that ∗
means componentwise product). This proves the following inequality involving Hamming
weights wt(c) ≥ σ(β) (see [3, Theorem 8]). Now, reasoning as in the proof of Theorem
3.9, consider the polynomial G introduced in that proof and derived from F . Then we get
that wt(c) = wt(e) ≥ τ(β), where e = φ(G) and the inequality holds because τ(β) is the
value σΛ(β), σΛ being the σ function for the δ-sequence Λ formed by the last two elements
in Γ. �

To finish this section and this paper, we present an example of two codes E1 ⊂
E over the field F32 of length 1024 and such that dimE = 882, dimE/E1 = 1 and
d(E/E1) ≥ 77. Indeed, we use the code E = E((46,−21)) defined by the δ-sequence
{(16, 0), (4, 0), (1, 0), (1,−1)}. Here the ν-vector is (4, 4) and B = (2, 4, 4, 32). Since
(46,−21) = 1(16, 0)+2(4, 0)+1(1, 0)+21(1,−1), we get τ((46,−21)) = 77. The obtained
bound coset in [10, Example 5.4] was 45 for an extension of two-point AG-codes C1 ⊂ C
with C of the same dimension as E and length 1023.
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