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Abstract: The strong chromatic behavior associated with a conventional 
diffractive lens is fully exploited to propose a novel optical device for pulse 
shaping in the femtosecond regime. This device consists of two optical 
elements: a spatially patterned circularly symmetric mask and a kinoform 
diffractive lens, which are facing each other. The system performs a 
mapping between the spatial position of the masking function expressed in 
the squared radial coordinate and the temporal position in the output 
waveform. This space-to-time conversion occurs at the chromatic focus of 
the diffractive lens, and makes it possible to tailor the output central 
wavelength along the axial location of the output point. Inspection of the 
validity of our device is performed by means of computer simulations 
involving the generation of femtosecond optical packets. 
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1. Introduction  

Photonic processing of telecom signals is a research topic that has been explored for more 
than 30 years [1] and the use of pulse-shaping technology has been acknowledged [2] as a 
convenient framework for synthesizing user-defined temporal waveforms. As an example, 
photonic generation of pulse trains with a repetition rate in the terahertz scale is relevant to 
support the requirements of high-bit-rate transmission. Both coherent and spectrally 
incoherent optical sources have been employed. Although incoherent processing is usually 
preferred for microwave signal filtering owing to the greater signal stability achieved, the use 
of a coherent source allows for both intensity and phase shaping, which is relevant, for 
instance, in quantum control [3]. 

Pulse shaping is usually performed through a space-to-time transformation, where spatial 
masking of an optical beam causes its temporal modulation. In the Fourier-transform pulse-
shaping technique, the conversion is achieved by spectrum equalization through complex 
amplitude modulation on the Fourier plane of a zero-dispersion grating device. Usually spatial 
light modulators (SLM), such as a liquid crystal SLM or an acoustic-optic modulator, 
substitute the fixed mask to achieve a programmable pulse shaping [2]. More sophisticated 
pulse processing operations have been used to convert spatial-domain images to ultrafast 
time-domain optical waveforms with fixed computer-generated holograms [4] or dynamic 
real-time holographic material in a four-wave mixing arrangement [5]. 

Although initially implemented for input pulses in the picosecond time scale [6], the so-
called direct space-to-time (DST) pulse shaper has been adapted to the femtosecond range and 
promoted as a fast data encoder [7]. The idea is that the spatial mask itself acts as the temporal 
filter, in contrast to the behavior of a Fourier pulse shaper, where a Fourier transform 
operation is required for the design of the temporal filter. This reduces the computation time 
and thus allows for faster operation. The three building blocks of the DST pulse shaper are: 1) 
spatial masking that can be programmable by using a SLM; 2) wavelength dispersion either 
through a diffraction grating [8] or even with a virtually-imaged phased array for higher 
resolution [9]; and 3) beam focusing through a chromatically corrected refractive objective.  

In this manuscript, we describe a quasi-direct space-to-time (QDST) pulse shaper 
consisting of a mask attached to a kinoform diffractive lens (DL) [10]. The term quasi-direct 
refers to a space-to-time transformation from the squared radial coordinate to time. Unlike the 
DST pulse shaper, in our system beam dispersion and focusing are performed exclusively in 
terms of diffraction. This inherent diffractive nature grants a pulse-shaping device new 
functionality and flexibility, namely: 1) The mask function and the DL can be implemented 
together in a single SLM, thereby providing an easy-to-align, compact real-time pulse shaper; 
and 2) It is suitable for controlling and manipulating beams in the extreme ultraviolet (XUV) 
or x-ray spectral region, where refractive lenses cannot be used due to the absorption of 
materials. Fresnel zone plates (the less efficient version of the DL) have already been 
successfully applied in these regions of the electromagnetic spectrum [11]. The availability of 
shaped pulses in the UV can be applied in the control of electronic responses of atoms and 
molecules. In this region, micro-mirror SLM and acousto-optic devices are now employed in a 
Fourier pulse-shaping geometry [12,13]. Moreover, femtosecond pulses from a hard x-ray 
free-electron laser, which will open up new horizons for femtochemistry, nanoscale dynamics 
and molecular biological science, are currently under construction [14].  

2. All-diffractive pulse shaper device 

Figure 1 shows a schematic representation of the QDST pulse shaper. A pulsed plane-wave 
emitted by a femtosecond laser oscillator with a carrier frequency of 0ω  is used to illuminate 
the system. The temporal amplitude associated with the input pulse is denoted by inu ( t ) . The 
optical device is made up of a circularly symmetric mask with complex transmittance t( r )  
attached to a DL. The DL has a focal length of 0 0Z( ) Z /ω = ω ω , where 0Z  is the focal length 
for 0ω . The output point is located at the axial distance z from the composed elements, where 
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a pinhole gathers the diffracted light. To ensure high efficiency we limit the z position to the 
focal range of the DL. For our mathematical treatment ( )1z Z= ω  is considered, being 1ω  a 
spectral component of the incident pulse spectrum.  

 

 
Fig. 1. Schematic diagram of the all-diffractive pulse shaper. 

 

In order to study the propagation of an ultrafast pulse through the pulse-shaper device, we 
first consider one spectral component of frequency ω  within the amplitude spectrum of the 

incident pulse, S( )ω�

� , where 0
~ ω−ω=ω . Here, S( )ω�

�  is the Fourier transform of inu ( t ) . The 

on-axis amplitude distribution outU ( )ω�  at the output point is assessed by means of the 
generalized Huygens-Fresnel diffraction integral expressed in terms of the ABCD matrix for a 
cylindrical coordinate system 

                   2
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In Eq. (1), L  is the on-axis optical path length between the input and output planes, which 
coincides with ( )1Z ω  in the proposed system. To determine the values of elements A and B, 

the ABCD matrices associated with the DL and with the free-space propagation through the 
length ( )1Z ω  are multiplied as follows 
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Note that the thin lens approximation for the DL used in this mathematical formalism holds 
whenever its number of periods is more than 100 [15]. For our purposes it is convenient to 
express the complex transmittance of the mask t( r )  as a function of a new variable, defined 

as 2rμ =  in such a way that q( ) t( r )μ = . Here phase and amplitude information can be 

stored in the function ( )q μ . The output field can now be expressed as 

                  
( ) ( ) ( )
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� ��

�    , (3) 

where Q�  is the spatial Fourier transform of ( )q μ . The ω  in front of the exponential function 

can be approximated by 0ω  with a negligible error for pulse durations longer than 10 fs. Then, 

the output temporal amplitude outu ( t )  given by the inverse Fourier transform of Eq. (3) yields 
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   , (4) 

where the symbol ⊗  stands for the convolution operation and ( )1t Z / cτ = − ω  is the proper 

time. The QDST conversion constant, which gives the mapping from the radial square spatial 
coordinate of the input mask to the temporal duration at the pulse shaper output, is provided 

by ( )( )11 2/ cZβ = ω . The value of β  coincides with the propagation time difference (PTD) 

per millimeter square between the phase and pulse fronts along the cross-section of the DL. 
This PTD can be calculated by geometrical arguments, as stated in [16].  

Equation (4) is the main analytical result of this paper. It shows that the synthesized 
waveform is a convolution of the input ultrashort pulse with a scaled representation of the 
function ( )q μ  (whose spatial dependence has been converted into a temporal one 

characterized by the scale factor β ) multiplied by a linear phase term that represents a 
frequency shift. Control of the output temporal waveform by constructing the appropriate 
mask can be a valuable technique when production of such waveforms by other methods is 
impossible or complicated. Note that when the time width of the input temporal amplitude is 
much shorter than the minimum feature size of the temporally mapped mask, inu ( t )  can be 
approximated by a Dirac function, and the output temporal amplitude is mainly the function 

( )q /τ β . When this approximation does not hold, the output waveform is a smoothed version 

of ( )q /τ β  due to the convolution operation. 

3. Numerical simulations 

To corroborate the goodness of the mathematical treatment, we perform some numerical 
simulations by direct application of Eq. (1). Specifically, we illustrate the use of the QDST 
pulse shaper for the generation of a train of N identical equally-space flat-topped pulses. To 
this end, the mask is made up of a set of N annular apertures with the same areas. It is periodic 
in the squared radial coordinate, with a period given by 2p . The inner and outer radii of the 

rings fulfill the conditions imr p m=  and omr p m= + ε , where 0 1< ε <  and 

0 1 2 1m , , ,...N= − . These masks were recently proposed for the generation of THz bursts of 
pulses for telecommunications [17]. Observe that in the optical system of [17] there is no DL 
to focus the light, so the output pulses are obtained from the superposition of the 2N boundary 
wave pulses emitted from the edges of the annular apertures. In contrast, the QDST pulse 
shaper uses the mask to tailor the PTD caused by the DL. This leads to an efficiency several 
orders of magnitude bigger and a higher degree of versatility in the pulse design.  

For simulation purposes, the pulsed radiation emitted by a Cr+4:YAG laser is used [18]. Its 
center wavelength is of =0λ 1525 nm and the standard deviation width of the Gaussian 
temporal instantaneous intensity yields 41.7 fs. The mask has realistic values of p = 5.5 mm, 
ε  = 0.5, 14N = , and a maximum diameter of about 4 cm. The width of the narrowest ring in 
the mask is of 0.4 mm so it can be fabricated with conventional lithography techniques by 
using direct laser writing on a chrome photomask. This mask is depicted in Fig. 1 and from 
now on it will be referred to as mask M. The focal length of the DL is 0Z  = 100 mm. When 
the pinhole is located at the above focal position β  = 16.6 fs/mm2. The instantaneous intensity 
profiles obtained at z = 98 mm, z = 100 mm and z = 102 mm are plotted together in Fig. 2(a). 
They correspond to a sequence of pulses with a frequency of 1.98 THz. The different plots are 
superimposed, which indicates that the output signal is unaffected by the change of z when we 
move along the focal region of the DL. In this range, the change in the value of β  is 
negligible. However, variations in the z position of the pinhole change the center wavelength 

#98973 - $15.00 USD Received 18 Jul 2008; revised 22 Sep 2008; accepted 23 Sep 2008; published 10 Oct 2008

(C) 2008 OSA 13 October 2008 / Vol. 16,  No. 21 / OPTICS EXPRESS  16996



of the pulses (shift effect). For z = 100 mm, the output spectrum in logarithm scale is plotted 
as an inset in Fig. 2(b). This figure also shows the normalized power spectrum for z = 98 mm 
(short-dashed line), z = 100 mm (continuous line) and z = 102 mm (long-dashed line). The 
spectrum shift can be clearly appreciated by inspecting the position of the peaks. For each z 
distance the central wavelength takes the values of 1555 nm, 1525 nm and 1494 nm, 
respectively.  

 
Fig. 2. Temporal and spectral response of the system plotted in Fig. 1. (a) Normalized 
instantaneous intensity, and (b) Normalized power spectrum. In both cases, three different z 
distances were considered: z = 98 mm (short-dashed curve), z = 100 mm (solid curve) and 
z = 102 mm (long-dashed curve). For z = 100 mm, the power spectrum in logarithmic scale is 
shown as an inset. 

 
Next, we explain the spatiotemporal distribution in the output plane of the QDST pulse 

shaper, which was used to generate a data code pattern. Binary code patterns are crucial as 
optical packet-headers in packet-switched networks and for the photonically-assisted 
generation of microwave and millimeter-wave arbitrary waveforms [8,9]. The mask that was 
employed is shown in Fig. 3(a) and we call it mask N. It has the same characteristics as mask 
M but some rings have been removed. Figure 3(b) shows the output spatiotemporal intensity 
distribution calculated for the above system parameters at z = 100 mm. This is carried out 
numerically by solving the Huygens-Fresnel diffraction integral. A sequence of pulses with 
the same temporal duration is observed. We note that to obtain equal-amplitude pulses a small 
pinhole is required. For clarity, in Fig. 3(c) we show the instantaneous intensity for two 
pinhole sizes, with radii of r = 0.5 μm and r = 40 μm, integrated over the whole area of the 
pinhole. To mitigate the reduction of the amplitude arising from the finite pinhole radius, the 
amplitude of the output pulses can be modulated to have equal values by truncating the rings 
of the mask. To illustrate the effect of a transversal mismatch of the pinhole position, the 
instantaneous intensity for a 2 μm off-center punctual pinhole is also shown in Fig. 3(c). 
These effects that are imposed by experimental/construction parameters are subjects for 
continuing study. 

Finally, we consider the efficiency of the QDST pulse shaper. A simple calculation of the 
efficiency can be performed by integrating the output power relative to the input power for the 
carrier frequency. Although the simulation does not consider losses due to the diffraction 
efficiency of a real DL, it is useful as an upper limit to the available output power. Figure 3 
(d) shows the resulting efficiency calculated in terms of the pinhole size, for the masks and 
parameters used in the previous simulations and at z = 100 mm. With our system parameters, 
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the efficiency increases linearly as the pinhole radius increases until it reaches approximately 
35 μm. Beyond this point, the increase of the efficiency is very slow. 

 
Fig. 3. (a). Mask N used for the generation of the binary code 01001101011101; (b) 
Normalized spatiotemporal intensity distribution for system in Fig. 1 by placing Mask N 
calculated for z = 100 mm; (c) Normalized output instantaneous intensity distribution for a 
punctual pinhole locate 2 μm off-axis (solid line) and for two on-axis pinholes of radii r = 0.5 
μm (long-dashed line) and r = 40 μm (short-dashed line); (d) Monochromatic efficiency of the 
system as a function of the pinhole radius for masks M and N. 

 

4. Conclusions 

We present a novel QDST pulse shaper. The all-diffractive nature of the setup makes it 
suitable for working in different regions of the electromagnetic spectrum. This is especially 
useful when conventional lenses cannot be used, as with the XUV or X-ray radiation. The 
proposed technique utilizes the PTD associated with passage through a DL together with a 
circularly symmetric spatial mask to obtain the desired temporal amplitude. Computer 
simulations for the generation of a THz burst of pulses for telecommunication were shown. 
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