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Abstract: 

The recent development of broad-scope high resolution mass spectrometry (HRMS) 

screening methods has resulted in a much improved capability for new compound 

identification in environmental samples. However, positive identifications at the ng/L 

concentration level rely on analytical reference standards for chromatographic retention 

time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a role 

in increasing confidence in suspect screening efforts for new compounds in the 

environment, especially when standards are not available, but reliable methods are 

lacking. The current work focuses on the development of artificial neural networks 

(ANNs) for tR prediction in gradient reversed-phase liquid chromatography and applied 

along with HRMS data to suspect screening of wastewater and environmental surface 

water samples. Based on a compound tR dataset of >500 compounds, an optimized 4-

layer back-propagation multi-layer perceptron model enabled predictions for 85 % of all 

compounds to within 2 minutes of their measured tR for training (n=344) and 

verification (n=100) datasets. To evaluate the ANN ability for generalization to new 

data, the model was further tested using 100 randomly selected compounds and revealed 

95 % prediction accuracy within the 2-minute elution interval. Given the increasing 

concern on the presence of drug metabolites and other transformation products (TPs) in 

the aquatic environment, the model was applied along with HRMS data for preliminary 

identification of pharmaceutically-related compounds in real samples. Examples of 

compounds where reference standards were subsequently acquired and later confirmed 

are also presented. To our knowledge, this work presents for the first time, the 

successful application of an accurate retention time predictor and HRMS data-mining 

using the largest number of compounds to preliminarily identify new or emerging 

contaminants in wastewater and surface waters.  
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1. Introduction 

The number of emerging contaminants in the aquatic environment is increasing, due to 

urbanization and subsequent societal and industrial needs (Pal et al., 2014). The 

development of liquid chromatography-high resolution mass spectrometry (LC-HRMS) 

technologies has revolutionized the analysis of emerging contaminants in environmental 

waters, and especially for screening of large numbers of compounds (Agüera et al., 

2013; Gómez et al., 2010; Hernández et al., 2011; Hogenboom et al., 2009). HRMS 

instruments allow the recording of full-scan spectra with high mass accuracy and 

resolution, thus making it possible to search for any given compound based on its exact 

mass.  

There has been much interest in improving the confidence in the identification of 

small molecules with HRMS; from potential positives through to detection and finally 

confirmation (Hernández et al., 2015a; Schymanski et al., 2014). The main 

distinguishing factor between these levels is the (non-) availability of reference 

standards. Suspect screening refers to compounds tentatively identified based solely on 

HRMS data and comparable spectral libraries. Confirmation requires reference 

standards. An additional tool to increase the confidence in the tentative identification of 

compounds for which standards are unavailable is reliable and accurate tR prediction. 

This is of particular relevance in the case of degradation/transformation products (TPs), 

which can reach the aquatic environment in high concentrations, but commonly for 

which reference standards are less accessible. Chemical risk assessment is therefore 

significantly challenging for such compounds. 

Prediction of tR plays an important role in the qualitative identification of 

emerging contaminants. Many different approaches to tR prediction exist and range 

from the simple (Kern et al., 2009; Nurmi et al., 2012) to the complex (Goryński et al., 

2013; Ji et al., 2009; Kaliszan et al., 2003; Ukić et al., 2014a). For example, logKow 

models can be derived using freely accessible data from chemical databases such as 

ChemSpider and PubChem, as well as freeware prediction sources such as VCCLABS. 

Its use in tR prediction is extremely simple to implement. It is frequently used in 

environmental studies for the description of the fate of various pollutants and as a 

simple tR predictor for TPs (Kern et al., 2009) and emerging contaminants (Bade et al., 

2015; Nurmi et al., 2012). Alongside simple algorithms, other and more complex in 
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silico approaches now exist which are based on quantitative structure-retention 

relationship (QSRR) modeling, including artificial neural networks, support vector 

machines and random forests (Giaginis and Tsantili-Kakoulidou, 2012; Héberger, 

2007). The principal aim of QSRR is to predict retention data from the molecular 

structure and its physicochemical properties, using a range of input descriptors and 

measured tR data. One QSRR method gaining recent attention for broad screening using 

high resolution techniques is the use of artificial neural networks (ANNs), a predictive 

computing technique that has shown itself as a promising tR predictor with potentially 

higher accuracy than classical models (Miller et al., 2013; Ukić et al., 2014b). The 

design of ANNs were inspired by the human brain and differ from classical computer 

programs in that they generally employ non-linear learning techniques using a set of 

case examples (i.e. a training dataset) (Kaliszan et al., 2003). In the training phase, the 

ANN requires a range of suitable molecular descriptors as well as the true output value 

(in this case, measured tR) to use for comparison with predicted values. At the same 

time, a second dataset of case examples is often used for verification and to assess 

overall ANN predictive error. The true output values in the verification set are generally 

not employed for learning, but the number of training cycles can be stopped by the user 

or the software when the overall measured error across all cases is at its minimum. 

Therefore, ANN learning is generally an iterative process and once an acceptable 

number of training cycles is reached, the optimized ANN can be applied to predict the 

output where experimentally derived data are unavailable (Miller et al., 2013).  In some 

cases, a third dataset can be used after the model has been finalized to ‘blind test’ the 

predictive power of the network. Its use is even more pertinent for analyses where large 

number of new analytes are expected to occur and with potentially high variance from 

sample to sample, such as in environmental and municipal water samples. Therefore, 

since information from the sample includes chromatographic tR as well as HRMS data, 

it makes this interpretation of suspect occurrence more accessible in the first instance. 

The aim of this work was to develop and evaluate ANN for predictions of 

unknown chromatographic tR in suspect screening of environmental waters. To the best 

of our knowledge, this method includes the largest range of physicochemically diverse 

compounds for this purpose (n=544 in total) and includes both neutral and charged 

compounds eluted under gradient reversed-phase LC conditions. Lastly, this work 

aimed to improve upon a recent logKow-based tR prediction approach (Bade et al., 2015) 
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using the ANNs as an alternative. This work, for the first time, presents the use of ANN 

for identification of additional suspect compounds (including metabolites and TPs) in 

wastewater and surface water samples both with and without reference standards.  

2. Experimental 

2.1 Reagents and Chemicals 

A total of 544 analytical grade reference materials were used for preparation of model 

solutions at 25 µg/L or 50µg/L (diluted from mixed standard solutions in methanol or 

acetonitrile with water) for ANN modeling of tR. These included pesticides, drugs of 

abuse, human/veterinary pharmaceuticals and mycotoxins (See Supplementary 

Information (SI) Table S1 for all compounds used in this study). These covered a large 

range of molecular hydrophobicity (logKow -3 to 9). Information relating to 595 

standards was available (Bade et al., 2015), however after transforming the compounds 

using SMILES codes, some errors were observed, leading to incomplete data, and a 

further 42 were removed from the initial ANN method development (Section 3.1) to use 

in a subsequent blind test (Section 3.2) .Further details relating to these compounds can 

be found elsewhere (Bade et al., 2015; Hernández et al., 2015b).  

2.2 Water samples for suspect identification  

A total of 44 composite (24-h) influent and effluent wastewater (IWW and EWW) 

samples and grab surface water (SW) samples were used to demonstrate the application 

of the developed ANN model. All these samples were previously used in different 

studies performed at our lab using the same analytical instrumentation for 

analysis.(Hernández et al., 2015a) All measured tR data herein were generated using 

ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass 

spectrometry (UHPLC-QTOF-MS). 

2.3 UHPLC-QTOF MS 

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to a 

hybrid quadrupole-orthogonal acceleration-TOF mass spectrometer (XEVO G2 QTOF, 

Waters Micromass, Manchester, UK), using a electrospray ionization (ESI) Z-Spray 

interface operating in positive mode. The chromatographic separation was performed 

using an Acquity UPLC BEH C18 100 ×  2.1  mm, 1.7µm particle size column (Waters) at 
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a flow rate of 300 µl/min. Gradient elution was performed using mobile phases of 

A=  H2O and B=  MeOH, both containing 0.01% HCOOH. The initial percentage of B 

was 10%, which was linearly increased to 90% in 14 min, followed by a 2  min isocratic 

period and, then, returned to initial conditions during 2  min. The total run time was 18 

min. Nitrogen was used as the drying gas and nebulizing gas.  

MS data were acquired over an m/z range of 50–1000. A capillary voltage of 

0.7  kV and cone voltage of 20  V were used. Collision gas was argon 99.995 % (Praxair, 

Valencia, Spain). The desolvation temperature was set to 600°C, and the source 

temperature to 135°C. The column temperature was set to 40°C. MS data was acquired 

in MSE mode, selecting a collision energy of 4 eV for low energy (LE) and a ramp of 

15-40 eV for high energy (HE). The LE and HE functions settings were for both a scan 

time of 0.4s. (Hernández et al., 2011; Ibáñez et al., 2013)  

Processing of MS data was made using ChromaLynx XS application manager 

(within MassLynx v 4.1; Waters Corporation). The following parameters were used: 

mass window 0.020 Da (for positive ID ≤ 0.010 Da), peak width at 5% height: 6 

seconds, peak-to-peak baseline noise: 1000 and threshold absolute area 500. When 

manually searching the data for all peaks in an eXtracted Ion Chromatogram (XIC), a 

chromatographic peak was thought viable when above an intensity threshold of 3000 

counts.  

2.4 Molecular description and neural network optimization procedures 

Compound logD data (for a mobile phase of pH=3.2) were generated using Percepta 

PhysChem Profiler (ACD Laboratories, ON, Canada) and for all other descriptors, 

Parameter Client freeware was used (Virtual Computational Chemistry Laboratory, 

Munich, Germany). Canonical simplified molecular line entry system strings (SMILES) 

were created using ChemSpider freeware (Royal Society of Chemistry, UK) for 544 

compounds and from these 16 molecular descriptors (as ANN inputs) were generated 

including the number of double and triple bonds (nDB or nTB), the number of carbon 

and oxygen atoms (nC or nO), the number of 4-9 membered rings (nR04-nR09), 

unsaturation index (UI), hydrophilic factor (Hy), Moriguchi and Ghose-Crippen logP 

(MlogP and AlogP respectively) as well as with software predicted logKow data (Tetko 

et al., 2005). Prediction of tR (as the designated single output) via neural networks was 

performed using Trajan version 6.0 neural network simulator (Trajan Software Ltd., 
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Lincolnshire, U.K.) and compared with experimentally determined tR via correlation 

graphs as well as assessment of residual errors. Table S1 has all compounds and their 

respective predicted and experimental tR and ANN subset.  

 

 

3. Results and Discussion 

 

In a previous study, we developed a simple tR prediction model based on logKow of 

nearly 600 compounds, predicted using freeware (Bade et al., 2015). This resulted in 

approximately 70 % of all compounds being predicted within 2 minutes of the measured 

tR, and 95 % within 4 minutes. This technique was simple to implement and facilitated 

the removal of several false positives. However, when investigating unknowns and 

compounds for which reference standards were unavailable, it was concluded that a 

more robust, accurate and precise methodology was still needed. In this vein, ANNs 

were considered as an alternative. Recent work successfully used ANN for a similar 

purpose, albeit using a much smaller set of compounds of 86 and 166 compounds in 

either study and focused only on pharmaceuticals (Miller et al., 2013; Munro et al., 

2015). It is unlikely that this fully represents the breadth of alternative compound 

classes and chemistries potentially occurring simultaneously in environmental waters. 

However, these models successfully predicted tR for a range of blind test drug 

compounds in wastewater and urine to warrant further investigation here using a much 

larger case dataset.  

3.1 Prediction of tR using Artificial Neural Networks (ANNs) 

The molecular descriptors chosen were based on the previous work wherein more than 

200 descriptors were evaluated (Miller et al., 2013). As the same type of reversed-phase 

column and LC system were used in both studies, the same descriptors were hoped to 

provide similar results. These descriptors were used again to also assess the possibility 

for transferring the model to another laboratory and to extend the prediction to a much 

larger set of chemically diverse compounds. Collinearity data for all molecular 

descriptors and retention time are given in the SI. Higher Pearson correlations were 

observed for hydrophobicity-based descriptors with retention time as was perhaps 
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expected (maximum R = 0.823 with logKow). Similarly, these descriptors also showed 

some collinearity with each other (R ≤0.889) which prevented strong conclusions to be 

drawn regarding their relative importance to an ANN model. As molecular descriptors 

selected were from previous investigations, there is also the possibility that additional 

descriptors may have had more importance to retention prediction on this system. For 

example, retention on reversed-phase media is not only dependent on hydrophobic 

interactions, but also steric and shape effects. Large molecules may not interact with the 

stationary phase well and thus show reduced retention (Wilson et al., 2002). A simple 

Pearson correlation was examined for a selection of potentially relevant additional 

descriptors covering charge states, geometrical, topological and physicochemical 

properties. Overall, most of these descriptors showed weak relationships <0.5 except for 

the descriptor BTLA96 which showed a negative Pearson coefficient of -0.649.  

Over 100,000 network architectures for each model type were initially 

investigated for their predictive ability across five different ANN model types including 

3- and 4-layer multi-layer perceptrons (MLPs), generalized regression neural networks 

(GRNNs), radial basis functions (RBFs), linear neural networks and probabilistic neural 

networks (PNN). For training, 344 cases were used along with 100 cases for both 

verification and blind testing of network performance. Cases were randomly assigned at 

the beginning of each network test to prevent any bias from pre-selection. Upon 

selection of the ‘best’ model statistics (minimum/maximum values, interquartile ranges, 

standard deviations, medians and means) were generated to ensure that a fair 

representation of cases and descriptors were present in each dataset subset (see SI).  The 

diversity of ANN types and architectures tested was balanced against the error 

generated. For network design and testing the omission of input descriptors was 

included as an option. One hundred of the best networks (software selected) were 

retained for further investigation which mainly comprised of MLPs, GRNNs and RBFs. 

Overall for this separation system, the best correlations of predicted versus 

experimentally measured tR were observed using MLPs in comparison to all other types 

and these correlations were in agreement with previous works despite different 

compounds being used for training, verification and blind testing (Barron et al., 2009; 

Miller et al., 2013; Munro et al., 2015).The finalized network was found to be a 4-layer 

16-19-9-1 MLP using all 16 molecular descriptors as inputs (Figure 1). The source 

code (in C) for this ANN has been attached in the SI. Reducing the number of 
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descriptors further worsened predictive accuracy of the blind test set in general. This 

ANN type and architecture was chosen based on the lowest absolute errors (i.e. 

predicted tR-measured tR) in the training, verification and blind test sets across all 

networks. Therefore, ANN architecture was based on performance and the software 

designer tool was used to optimize the number and composition of hidden layers. The 

coefficients of determination (R2) were between 0.86 and 0.90 between the three sets, 

which was already a marked improvement on that obtained from our previous study at 

R2= 0.67. Furthermore, the root-mean-squared error (RMSE) of the blind set of 

compounds (1.03 min) is less than half that of our previous work (2.19 min)  (Bade et 

al., 2015).  

The maximum measured tR on this chromatographic system was 16.50 min 

(narasin; an antibiotic) and the lowest was 0.86 min (methamidophos; an 

organophosphate insecticide). For all compounds within this retention window of 15.64 

min, the mean error in tR prediction was <6 % using this ANN approach for all 

compounds. Overall, the mean absolute errors and standard deviations were recorded as 

0.97±0.95 min (training set); 0.79±0.85 min (verification set); 0.79±0.69 min (blind test 

set); and 0.91±0.89 min (all sets combined). When focussing specifically on the blind 

test set which was used to simulate a true application of the approach, 95 % of 

compounds had predicted tR values within 2.00 min of the measured value and the 

maximum error was 3.56 min for metosulam (Figure 2). However, across the other 

datasets some larger errors were recorded in isolated cases. Table 1 shows that for all 

datasets, 90% of all 544 compounds could be predicted to within 2.00 min of the 

measured tr value. Upon sub-division of the datasets, 85 % of the compounds in the 

training and verification sets and 95% of compounds in the blind test set were predicted 

to within two minutes of the measured value. The maximum error recorded within the 

training set was +6.25 min (for the beta blocker atenolol; measured tr=2.49 min); within 

the verification set was +5.19 min (for the anti-helminthic drug levamisole; measured 

tr=3.02 min) and within the blind test set was +3.56 min (for the pesticide, metosulam; 

measured tr=7.54 min).  

Prediction errors for all cases were investigated again with respect to any 

apparent trends and it was found that a very slight over-estimation existed for poorly 

retained compounds, as well as the converse for strongly retained compounds. Recent 

work focussing on modelling a smaller number of compounds in wastewater also 
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revealed a similarly slight bias, but used a different network type (a GRNN)(Munro et 

al., 2015). When examining those compounds with absolute errors >2.00 min (54 

compounds in total across all sets), these were spread across the entire compound 

retention range (mean measured tR =7.81±3.93). However, a slight over-estimation was 

again apparent for 29 compounds with tR from 1.34-5.38 min (mean measured tR = 2.97 

min). Reduced under-estimation was observed for the remaining 25 compounds eluting 

between 5.38-16.30 min (mean measured tR = 10.67 min for these compounds). 

Seventeen compounds eluting <5.38 min were over-estimated and tR for eleven were 

under-estimated when eluting >10.00 min.  

The contribution of each descriptor towards the final prediction output was 

investigated using the ANN software sensitivity analysis tool. In this test, each 

molecular descriptor is removed and treated as missing by the ANN. A new predicted tR 

is generated and a ratio calculated between the network error with a given input omitted 

to the error of the network with a complete input dataset. Ratios >1 indicated higher 

importance in the prediction. Perhaps not surprisingly for a reversed-phase 

chromatography system, the most important molecular descriptors and their measured 

error ratios were: logD (1.443), logKow (1.182), AlogP (1.114), nO (1.096), UI (1.006) 

MlogP (1.023), Hy (1.017), nDB (1.012), nR04-nR09 (all 1.000-1.063), nTB (1.004) 

and nC (1.002) Hydrophobicity-based descriptors are likely to show importance as 

retention on reversed-phase media is primarily by van der Waals interactions. Again, 

while these descriptors together show their combined importance to the network, 

moderate collinearity between them means relative error ratios should be treated with 

caution for these descriptors (Table SI). However, such collinearity should not 

adversely affect predictive ability of the model. The lowest ratio was observed for nR04 

with a ratio of 1.000 meaning no change in network performance was measured for its 

removal.  Within the dataset, only 14 compounds had 4-membered rings (amoxicillin, 

ampicillin, cefaclor, cefadroxil, cefalexin, cefotaxime, cefquinome, cefuroxime, 

cloxacillin, dicloxacillin, heptenophos, oxacillin, oxasulfuron, and penicillin G). 

Inclusion of nR04 still resulted in better performance in comparison to any other type or 

architecture investigated during the network optimization stage and so was retained as a 

descriptor in the final ANN model. Error ratios discussed above represent that of the 

entire dataset (training, verification and blind test). Sensitivity analysis (see SI) of each 

set separately revealed excellent consistency across all sets, showing that predictive 
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accuracy was likely to be the dominant contributors to error ratios rather than over-

fitting of the training set alone. 

 

3.2 Use of ANN as a tR predictor in environmental water samples 

In wide-scope screening methods, where thousands of compounds are searched, it is of 

great importance to have secondary techniques for aid in the identification process. 

While reference standards can unequivocally confirm the identification of a compound, 

purchasing and maintaining standards for all compounds is prohibitively expensive. 

Data acquired from MS fragmentation of suspect compounds may also direct 

investigations.  Furthermore, for many TPs, reference standards are not available and 

therefore alternate means for confidence in detection/identification are necessary. 

Although it is not comparatively informative as mass spectra, tR prediction models can 

be very helpful in gaining more confidence in the obtained data and reducing time-

consuming data processing. Most importantly, the application of tR prediction is not to 

replace the use of reference standards, but to help (along with MS/MS data) to direct 

synthesis efforts for confirmation in the usual manner. Prediction of tR is best used at 

the beginning of this process and is especially useful when at a certain exact mass (i.e. 

(de)protonated molecule of a suspect compound), more than one chromatographic peak 

appears in the corresponding XIC.  

Along these lines, and to test the “blind” skills of the ANN in a real environmental 

application, the 100 blind compounds as well as an additional set of compounds from 

our previous study not initially used into the ANN method (a total of 142 compounds),    

including primarily metabolites and TPs were searched. None of these compounds were 

in the training or verification sets used for ANN development. From this list of 142 

compounds,  46 were finally selected and searched in 44 water samples (EWW, IWW 

and SW) using ChromaLynx and the ANN predicted tR, based on their possible 

occurrence in the environment (Table S2) (Gracia-Lor et al., 2011, 2010; Hernández et 

al., 2015a; Zuccato et al., 2006). For further confidence, and to see how many false 

positive chromatographic peaks (above the intensity threshold) could be disregarded, 

fragment ions were also included in the detection process (Table S3). When a 

compound was identified on the basis of the accurate mass of the (de)protonated 

molecule and at least one fragment ion in at least one sample it was included in this test, 
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leaving 26 compounds of various chemical classes and including nine metabolites, for 

only some of which standards were available in our laboratory (Table 2). A tR window 

of 2 minutes was used in this section, as 95% of all compounds in the ANN blind set 

were within this window, thereby giving high confidence that almost all compounds 

should be found.  The only compound found to have a tR outside that of the ANN 

predicted 2 minute window was codeine. The incorporation of the ANN predicted tR 

allowed almost half (49%) of all chromatographic peaks to be ignored, and even after 

removing codeine from the calculation, 48% could be disregarded. Furthermore, all but 

three compounds had a reduction in the median number of potential positive peaks, 

while 11 compounds had a median value of only one chromatographic peak remaining 

after the introduction of the ANN predicted window.   

In this section, examples are shown in the identification of losartan (originally 

tentatively identified with tR prediction before a reference standard was purchased) and 

the tentative identification of the metabolites 10,11-dihydroxy carbamazepine and O-

desmethyl venlafaxine (no reference standard available).  
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3.2.1 Assignment with reference standards 

Losartan is a pharmaceutical used to treat hypertension that has been both predicted 

(Howard and Muir, 2013; Oosterhuis et al., 2013) and detected in environmental waters 

(Hernández et al., 2015a; Matsuo et al., 2011). Its presence in a suspect list is thus 

warranted, and its exact mass was incorporated into our HRMS database. When 

screening WW and SW samples, XICs at the exact mass of losartan (m/z 423.1700) 

resulted in two chromatographic peaks (4.63 and 10.13 minutes) (Figure 2, bottom 

left). The ANN tR predictor was used and calculated a tR of 9.95 minutes. This is almost 

exactly the tR of one of the peaks, but it is worth noting than even after incorporating a 

±2 minute window only one peak warranted further investigation. Nevertheless, both 

peaks could have conceivably corresponded to losartan, therefore further research was 

conducted.  

The LE and HE mass spectrum of the peak at 10.13 minutes was investigated for 

fragment ions: m/z 207.0917 (C14H11N2, -2.4ppm), 377.1552 (C22H22N4Cl, +5ppm) and 

405.1590 (C22H22N4Cl, -2.3ppm) (Figure 2, right). Literature (Hernández et al., 2015a) 

and the mass spectral database MassBank (Horai et al., 2010) were also searched to aid 

in the confidence of these fragment ions. It was found that these three fragment ions did 

indeed correspond to losartan. As seen in the figure, all associated fragments 

corresponded to the peak at 10.13 minutes, following the assertion of the tR predictor. 

Furthermore, it is clearly seen that none of the fragment ions correspond with that of the 

other peak in the LE (4.63 minutes). A standard was later purchased and injected, 

unequivocally confirming that the peak at 10.13 minutes did correspond to losartan.  

3.2.2 Tentative identification of metabolites without standard reference materials 

The elimination of false positives in suspect analysis is challenging, especially the 

environmental matrices investigated herein (SW and WW) as thousands of compounds 

may be present. Suspect screening, by definition, does not rely on reference standards 

(Krauss et al., 2010). While the exact mass capability of HRMS has gone some way to 

avoid false positives, even at narrow mass window chromatograms, matrix inferences 

can be present, thereby hindering confident identification (Bade et al., 2015; Croley et 

al., 2012). A precise tR predictor can therefore be a great additional means of 

identification.  
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Most research of emerging contaminants in the environment has focused on 

parent compounds, however many compounds can be at least partially metabolized or 

degraded in natural conditions (Jakimska et al., 2014). In this respect, the tentative 

identification of two major metabolites of carbamazepine and venlafaxine were 

explored: 10,11-dihydroxy carbamazepine and O-desmethyl venlafaxine (Figure 3a). 

More than one chromatographic peak was observed at the exact mass of each protonated 

molecule. The ANN tR predictor was then used to try to help minimize the number of 

peaks to be analysed, with the predicted tR calculated to be 6.29 and 5.76 minutes for 

10,11-dihydroxy carbamazepine and O-desmethyl venlafaxine, respectively.  

Two large (~4.00 and 6.66 minutes) and one small (~4.90 minutes) peaks are 

seen in the LE XIC of 10,11-dihydroxy carbamazepine (m/z = 271.1080). The predicted 

tR was calculated to be 6.29 minutes and by including a ± 2 minute window as in 

Section 3.3.1, the large peak at ~4.00 minutes could be disregarded, leaving the peaks at 

6.66 and ~4.90 minutes. The ability to focus on fewer peaks is the primary aim and 

benefit of tR prediction in environmental screening applications for unknowns. While 

having only one (correct) peak remaining is ideal, being able to disregard some peaks 

gives credence to the use of tR prediction in the identification process. To aid in the 

differentiation of these peaks, fragment ions were sought in literature, whereby one 

group performed an MS/MS experiment with a QTOF instrument to find the fragment 

ions of 10,11-dihydroxy carbamazepine (271.1080, 236.0706, 210.0913 and 180.0808) 

(Ferrer and Thurman, 2012). As the XICs in the figure show, all fragment ions have the 

peak at 6.65 minutes in common. This provides great confidence that this peak is indeed 

from 10,11-dihydroxy carbamazepine, however for unequivocal identification, a 

standard would still have to be purchased.  

The example of O-desmethyl venlafaxine represented the worst case scenario, 

where no peaks could be removed after application of the ± 2 minute limit window. 

However, it must be noted that this was a rare case and only occurred for three of 26 

compounds. In the LE XIC, two large (4.69 and 5.00 minutes) and two small peaks 

(~4.20 and 6.50 minutes) are seen. Even after incorporating the ANN predicted tR and 

associated window (5.76 ± 2 minutes), all four peaks are still of interest. With the peaks 

being so close together, even using a ± 1.3 minute window (corresponding to ~80% of 

compounds being successfully inside this window) would result in the correct 

elimination of only one small peak. In this situation, fragment ions have to be used to 
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gain further information on the identity. Fragment ions were thus searched in 

literature(Herrera-Lopez et al., 2014) and investigated in the HE. Figure 3b shows all 

ions corresponding to the peak at 4.69 min. While the ANN predicted tR and associated 

window did include O-desmethyl venlafaxine, all other peaks in the LE XIC were also 

inside, meaning that no further confidence could be gained by tR prediction, rather 

through the investigation of fragment ions. Nevertheless, the combination of ANN 

predicted tR and fragment ions led to the tentative identification of this compound.  

While the examples explained here show the successful assignment of 

chromatographic peaks, it is impossible to have total confidence with tR prediction. In 

cases where there is more than one peak in the XIC, and the predicted peak is found to 

be incorrect, the peaks slightly outside the prediction window will also have to be 

investigated.  Nevertheless, with data processing nowadays being the most time 

consuming part of environmental screening methods, the time saved by incorporating tR 

prediction outweighs the possibility of false negatives (and positives).  

These examples clearly show the utility of ANN as a tR predictor, not just for its 

ability to disregard some false positive peaks, but also for its accuracy and subsequent 

confidence for tentatively identified compounds. It is therefore recommended when 

performing large scope (e.g. >1000 compounds) screening of environmental samples to 

include accurate tR prediction in the strategy used for identification. This is particularly 

useful in the investigation of metabolites and TPs, for which standards can be very 

costly or unavailable. 
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Conclusions 

This work showed the development and use of a tR predictor based on artificial neural 

networks. In particular, a four layer multilayer perceptron successfully modeled 

retention of 544 compounds under these separation conditions. Overall, 90 % of all 

compounds eluted within 2.00 minutes of the predicted value and for 100 blind test 

compounds, 95% were predicted within this window. The network was applied to 

additional suspect compound occurrence in wide-scope screening based on the use of 

LC-HRMS, demonstrating that it can reduce the number of false negatives or positives. 

This saves time and effort in the tentative identification of the compounds detected, as 

only those chromatographic peaks that fit the predicted tR need to be focused on. Several 

representative examples are given to illustrate the usefulness of the complementary use 

of precise tR prediction in large suspect screening of emerging contaminants. It is 

recommended to include this prediction for the identification of suspect compounds, 

particularly in the investigation of metabolites and TPs of organic contaminants, for 

which reference standards are commonly less accessible.   
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Table 1: Summary of predicted tR errors for all ANN test sets. Numbers given in 
italics are those which fall below the proposed 2-min window limit 

Percentile of compounds  50 55 60 65 70 75 80 85 90 95 
Predicted tR error/min           
All sets (n=544) 0.66 0.75 0.85 0.97 1.05 1.19 1.39 1.56 1.96 2.80 
Training set (n=344) 0.70 0.81 0.89 1.02 1.13 1.24 1.45 1.70 2.21 2.87 
Verification set (n=100) 0.51 0.59 0.64 0.76 0.89 0.99 1.35 1.44 1.60 2.43 
Blind test set (n=100) 0.70 0.78 0.84 0.89 1.01 1.08 1.16 1.34 1.63 1.99 
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Table 2: All compounds used for testing ANN predicted tR, together with the 
number of samples each compound was detected, average number of peaks in the 
XIC and the ±2 minute window and the predicted and sample tR 

Compound  Detection 
rate out of 
44 
samples 

Median 
peaks per 
XIC (range)  

Median peaks 
inside ±2 min 
tR window 
(range) 

 Predicted 
tR (min) 

Sample 
tR (min) 

Inaccuracy 
in predicted 
tR (min) 

10,11-dihydroxy 
carbamazepinea 

30 2 (1-4) 1 (1-3)  6.29 6.66 0.37 

2-hydroxy-
terbuthylazineb 

6 6 (4-8) 2 (1-3)  4.24 5.50 1.26 

4-desmethoxy 
omeprazolea 

33 1 (1-2) 1 (1-2)  8.15 6.29 -1.86 

4-formylamino-
antipyrineb,c 

37 2 (1-8) 2 (1-4)  3.53 3.70 0.17 

a-hydroxy metoprolola 17 5 (2-10) 3 (2-4)  2.73 3.30 0.57 
Benzoylecgonineb 40 3 (1-6) 2 (1-5)  4.11 4.65 0.54 
Bezafibrateb 2 6 (4-7) 1 (1-1)  10.80 10.78 -0.02 
Caffeinea 40 3 (1-6) 1 (1-3)  3.17 3.83 0.66 
Carbamazepineb 40 3 (1-10) 3 (1-5)  7.73 8.82 1.09 
Carboxy losartana 35 2 (1-3) 1 (1-1)  10.75 10.44 -0.31 
Codeineb 25 5 (1-7) 1 (0-3)  4.85 2.46 -2.39 
Cotininea 32 10 (4-14) 5 (3-7)  2.00 1.81 -0.19 
Diazinonb,c 4 3 (2-5) 2 (1-2)  11.64 12.50 0.86 
Diclofenacb 13 1 (1-2) 1 (1-1)  11.71 12.17 0.46 
Gemfibrozilb 13 4 (3-7) 2 (1-4)  12.29 13.34 1.05 
Lidocainea 40 5 (1-11) 2 (1-4)  5.21 4.24 -0.97 
Lincomycinb,c 14 4 (2-8) 2 (1-4)  4.28 3.73 -0.55 
Losartanb 42 2 (1-4) 2 (1-3)  9.95 10.13 -0.18 
Metoprolola 24 3 (1-9) 1 (1-3)  4.07 5.44 1.37 
Naproxenb 32 7 (4-11) 2 (1-4)  10.06 10.54 0.48 
O-
desmethylvenlafaxinea 

29 3 (2-5) 3 (1-5)  5.76 4.68 -1.08 

Paraxanthinea 39 7 (2-12) 3 (2-4)  2.03 2.97 0.94 
Ranitidinea 23 4 (2-6) 1 (1-1)  3.03 2.10 -0.93 
Terbuthylazineb,c 4 1 (1-3) 1 (1-2)  9.60 10.78 1.18 
Trimethoprimb 32 7 (2-10) 4 (1-6)  3.11 3.52 0.41 
Valsartanb 39 2 (1-7) 1 (1-3)  10.90 11.24 0.34 

a: Standard not available in laboratory Sample tR was based on HRMS data and the 
incorporation of fragment ions 
b: Standard available in laboratory 
c: Compound in blind set of ANN 
  



Page 24 of 27 
 

Figures for Captions 
 
Figure 1: TOP: Correlation of measured and predicted tR for all compounds. The worst 
outliers in each set are also shown: A=atenolol (training set, error of  -6.21 minutes); 
B=levamisole (verification set, +5.19 minutes); C=metosulam (blind set, +3.56 
minutes). BOTTOM: Residual errors for all compounds in each dataset. For training, 
verification and blind test sets, n=344, 100 and 100 compounds respectively.

Figure 2: LEFT: eXtracted Ion Chromatograms (XICs) of losartan in an EWW sample, 
together with ANN tR prediction (9.95 min) and associated ±2 minute window (dotted 
lines; centre dashed line is the ANN-predicted value). RIGHT: Mass spectra from LE 
(bottom) and HE (top), showing fragment ions (423.158, 377.156, 207.092).    

Figure 3: Tentative identification of 10,11-dihydroxy carbamazepine (a) and O-
desmethyl venlafaxine (b) in an IWW and EWW sample respectively, together with 
ANN prediction and ± 2 minute window. 
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Figure 4  
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Figure 5:  
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Figure 6:  
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