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The carrier transport properties in nanocrystalline semiconductors and organic materials play a

key role for modern organic/inorganic devices such as dye-sensitized (DSC) and organic solar

cells, organic and hybrid light-emitting diodes (OLEDs), organic field-effect transistors, and

electrochemical sensors and displays. Carrier transport in these materials usually occurs by

transitions in a broad distribution of localized states. As a result the transport is dominated by

thermal activation to a band of extended states (multiple trapping), or if these do not exist, by

hopping via localized states. We provide a general view of the physical interpretation of the

variations of carrier transport coefficients (diffusion coefficient and mobility) with respect to the

carrier concentration, or Fermi level, examining in detail models for carrier transport in

nanocrystalline semiconductors and organic materials with the following distributions: single and

two-level systems, exponential and Gaussian density of states. We treat both the multiple

trapping models and the hopping model in the transport energy approximation. The analysis is

simplified by thermodynamic properties: the chemical capacitance, Cm, and the thermodynamic

factor, wn, that allow us to derive many properties of the chemical diffusion coefficient, Dn, used

in Fick’s law. The formulation of the generalized Einstein relation for the mobility to diffusion

ratio shows that the carrier mobility is proportional to the jump diffusion coefficient, DJ, that is

derived from single particle random walk. Characteristic experimental data for nanocrystalline

TiO2 in DSC and electrochemically doped conducting polymers are discussed in the light of

these models.

1. Introduction

The subject of this paper is the interpretation of measured

diffusion coefficient and mobilities for electronic transport in

systems with a broad distribution of localized electronic states.

Such systems include nanostructured metal-oxide semiconduc-

tors, and organic conductors, as well as more classical materi-

als such as the amorphous inorganic conductors. These

materials have raised increasing attention in the last two

decades, in relation with applications such as dye-sensitized

solar cells (DSC),1,2 organic solar cells,3,4 organic LEDs,5

organic electronics6 and biological wiring.7

In the presence of a broad distribution of localized states, i.e.,

if the density of states (DOS) varies with energy over

0.5–1 eV or more, electronic carriers are almost permanently

localized. The transport occurs by carrier jumps either via a

band of extended states, or if such states do not occur in a given

material, directly via localized states.8 The transport coefficients

are normally not constant quantities, but depend strongly on the

Fermi level (or carrier concentration). Two main approaches

have been used to describe such situations. The first is a classical

multiple trapping transport.9–11 This model includes two classes

of electronic states: the transport states above the mobility edge

(that may be associated with extended states in the conduction

band), and localized states in the bandgap. The latter states do

not participate in spatial displacement but retain the carriers for

a certain time by a trapping–detrapping process. The second

approach is the hopping transport.12–18 Here, the transport

occurs by transition between the states in the distribution, with

a probability given by the Miller–Abrahams jump rate.19 Aver-

aging the hopping rates over spatial and energy configurations is

usually very difficult, but the analysis is partially simplified in a

system with a steep distribution of localized states. For carriers

situated deep enough energetically, a particular level, called the

transport energy, Etr, determines the dominant hopping events.

The occurrence of the effective transport level effectively reduces

the hopping transport to multiple trapping, with Etr playing the
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role of the mobility edge. The concept of transport energy was

originally formulated20,21 for amorphous inorganic semiconduc-

tors with an exponential DOS17,20–23 and has been extended to

organic conductors with a Gaussian DOS.15,17,24–26

When carrier transport is governed by activation to some

type of transport level within a broad distribution of localized

states, a great variation of the diffusion coefficient occurs as

Fermi level moves in the bandgap, since the cost of promoting

a carrier to the transport level is largely modified according to

the occupation of the localized levels. The present work is

motivated by the advent of new classes of disordered electronic

materials of considerable technological relevance where the

large variation of diffusion coefficient and mobility have been

reported. In the organic conductors used in organic LEDs and

FETs, Tanase et al. showed large dependence of the mobility

on carrier density.27 In the DSC made with nanostructured

TiO2 and liquid electrolyte,1 variations of diffusion coefficient

were discovered by Peter and coworkers.28 Subsequently, it

was shown that such variations could be related29 to the

chemical capacitance of the nanostructured semiconductor.

It was found that for the interpretation of the diffusion

coefficient it is very important to distinguish between the

chemical and jump diffusion coefficient. These notions, the

chemical capacitance and the different diffusion coefficients,

will feature prominently in the present paper. A striking

demonstration of the difference between jump and kinetic

diffusion coefficient was given by van de Lagemaat et al.,30

and their work clearly showed the need for a careful identifica-

tion of the diffusion coefficient that is being measured.

In the present work we are interested in quasi-equilibrium

transport properties that determine steady-state device opera-

tion, and often provide sufficient knowledge of the transient

behaviour as well. The central aim of this work is to facilitate

the interpretation of experimental results about materials that

are designed for their effectiveness as part of electronic and

optoelectronic devices.31,32 These materials often display a

large variability of properties, depending on conditions of

preparation and measurement. Therefore, qualitative inter-

pretation of the results for obtaining information on specific

devices is often a priority of research. For this reason, in this

paper we have attempted to describe fully the properties of the

diffusion coefficient for activated transport in disordered

materials, starting the application of the general formulae

with very simple systems that already show some of the

properties of the more complex ones. We usually represent

the different quantities as a function of Fermi level. This is

most appropriate for electrochemical and photoelectrochem-

ical systems, where the Fermi level can be directly monitored

by potentiostatic control.32–34 A system that played a key role

in our understanding is the electrochemistry of redox poly-

mers.35,36 In the work of Chidsey and Murray35 the main

concepts used here were clearly formulated. They identified the

need to parametrize the varying chemical diffusion coefficient,

and therefore introduced the chemical capacitance (called

redox capacitance by them) and the conductivity–diffusivity

relationship, eqn (20) below. So the spirit of the present work

is an extension of ref. 35 including the energy disorder effects.

Another important aspect of electrochemical systems is that

electron conduction in a solid phase surrounded by electrolyte

(i.e., in nanostructured semiconductors, or conducting poly-

mers, or redox hydrogels) is charge-compensated by ionic

species.32 Eventually, the incorporation of ions may modify

the intrinsic energy levels of the materials, as it will be

commented in the case of electrochemical doping of poly-

mers.37 In the present work we restrict our attention to the

single-particle electronic DOS, consisting of a static distribu-

tion in the energy axis, and the interactions are neglected. ref.

32, 38–41 discuss additional examples of systems with strong

interactions between carriers. The generalized Einstein rela-

tion for electron transport in arrays of quantum dots42 has

already been adequately treated by van de Lagemaat,43 and

many examples of transport in band semiconductors under

degenerate conditions are analyzed in ref. 44; we do not treat

these systems here in detail.

In section 2 we define the main thermodynamic properties

and transport coefficients, the generalized Einstein relation,32

and the connection with experimental methods. In section 3 we

give the general properties of the multiple trapping models.

Section 4 presents two simple examples with discrete energy

levels which illustrate the relevant physics. Thereafter we treat

the carrier transport in the continuous DOS in examples that

are important for the photovoltaic and optoelectronic devices:

the exponential DOS (section 5), and the Gaussian disorder

model (section 6).

Throughout these studies the analysis focuses on finding the

effect of energy disorder on the main transport coefficients. We

work with the assumption of spatial homogeneity that gives

good results in many situations. This is a mean-field approach

in which the distribution of electronic states in the energy axis

is the same at every point, so that one can find typical

transition/hopping probabilities by suitable averaging over

energy and/or distance to the neighbor levels. However, it is

clear that energy disorder is usually accompanied by spatial

disorder. The prevalent paths for transport may take on special

geometrical features, or may be circumscribed to restricted

regions, if the distribution remains below the critical concen-

tration for percolation. An extended treatment of these ques-

tions, that are briefly commented in section 7, is beyond the

scope of the present report. We finish with some conclusions.

2. Transport coefficients and chemical capacitance

The connection between kinetic and transport properties out-

lined in this section is based on the phenomenological for-

mulation of Reed and Ehrlich.45 This approach has been

amply used in connection with surface diffusion,45 ion trans-

port in solids46,47 and in the simulation of model systems

consisting in interacting particles diffusing on the lattice.38,40,48

This formalism has recently been adapted32 for the interpreta-

tion of the electronic transport coefficients in electrochemical

measurements in quasi-equilibrium conditions.

It should be remarked that the electrochemistry of ionically

conducting solids has provided a wide experimental back-

ground that shows the necessity of these concepts and, in

particular, the need to distinguish between the chemical and

jump diffusion coefficient. A classical example is a huge

increase of the thermodynamic factor in Li1+dAl alloy over

a narrow potential range.49 Another example is that many of
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the curves reported below in Fig. 2 (chemical capacitance,

thermodynamic factor, jump and chemical diffusion coeffi-

cients) are basically similar to those in ref. 50 for describing Li

ion insertion into the graphite electrode (staged phase 3 + 4)

in terms of the two-level intercalation model.

2.1 Chemical capacitance

Let EF be the electrochemical potential or Fermi level of the

electrons, and m their chemical potential. We have

EF = �qf + m (1)

where q is the elementary positive charge and f is the local

electrostatic potential. Here, we assume that the local electro-

static level (i.e., the conduction band position, Ec = �qf) is
not modified by variation of the Fermi level. Therefore a

displacement of the Fermi level can be identified with a

variation of the chemical potential, dEF = dm. The chemical

capacitance (per unit volume) is defined as51,52

Cm ¼ q2
dn

dm
ð2Þ

The same quantity was introduced in ref. 35 as a redox

capacitance. Assuming a DOS function g(E), the carrier

density is found as

n ¼
Zþ1
�1

gðEÞf ðE � EFÞdE ð3Þ

where f(E � EF) is the Fermi–Dirac function,

f ðE � EFÞ ¼
1

1þ eðE�EFÞ=kBT
ð4Þ

that was reduces to the Boltzmann distribution, f(E) =

e�(E�EF)/kBT, when E � EF c kBT, with kB being Boltzmann’s

constant and T the absolute temperature. The chemical

capacitance is

Cm ¼� q2
Zþ1
�1

gðEÞ df

dEF
ðE � EFÞdE

¼ q2

kBT

Zþ1
�1

gðEÞf ðE � EFÞ½1� f ðE � EFÞ�dE

ð5Þ

In the zero-temperature limit, the capacitance is related to the

DOS function as53

Cm = q2g(EF) (6)

In this approximation, the Fermi–Dirac function is a unity

step function at the Fermi level. Therefore, displacing the

Fermi level by dEF simply fills with carriers a slice of the DOS:

dn = g(EF)dEF.

2.2 Diffusion coefficients

The random walks of an electronic carrier determine the jump

diffusion coefficient, that has the form40,48

DJ ¼
1

6t

1

N

XN
i¼1

Dri

 !2* +
ð7aÞ

where Dri is the displacement of the ith particle at time t, and

h i denotes a statistical average. More precisely, the jump (or

kinetic) diffusion coefficient defined by eqn (7a) reflects diffu-

sion of the center of mass of N particles, while the tracer

diffusion coefficient, D*, reflects random walks of a particle

D� ¼ lim
t!1

1

6Nt

XN
i¼1
ðDriÞ2

* +
ð7bÞ

If on average, there are no cross correlations between dis-

placements Dri(t) of different particles at different times, DJ

andD* become equivalent.40,48 Monte Carlo simulations show

that jump and tracer diffusion coefficient are practically

identical in many conditions.54 The jump diffusion coefficient

can often be expressed as38,39,45

DJ = hnihr2i (8)

in terms of a mean effective jump frequency hni, and the square

of effective jump length hr2i. Eqn (8) also takes a numerical

prefactor of order 1 depending on the dimensionality.

On the other hand, experimental information on the funda-

mental jump rates is often derived from the chemical diffusion

coefficient, Dn, that relates the flux Jn to the gradient of the

concentration by Fick’s law

Jn ¼ �Dn
@n

@x
ð9Þ

The diffusion coefficients Dn and DJ differ by the quantity

wn,
39,45,48

Dn = wnDJ (10)

that is called the thermodynamic factor,55 and is defined as

follows

wn ¼
n

kBT

@m
@n

ð11Þ

For the Boltzmann statistics wn = 1, and there is no difference

between jump and diffusion coefficient, but when the statistics

of electrons differs from ideality, wn can differ largely from 1.

In general, both site-saturation effects (as discussed below) and

interactions32,38–41 cause a variation of wn. wn can also be

expressed with respect to the chemical capacitance as

wn ¼
q2n

kBT

1

Cm
ð12Þ

2.3 Generalized Einstein relation

In the electron transport in non-degenerate band-conduction

materials, a single transport level consisting of extended states

is well defined. The conductivity is given by

sn = qnun (13)

where n is the total density of electrons and un is the electron

mobility. The mobility un and the diffusion coefficient Dn

are constant quantities and satisfy the standard Einstein

relation

Dn

un
¼ kBT

q
ð14Þ
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It has long been recognized that eqn (14) has important

limitations. For band transport in semiconductors, it holds

only under Boltzmann distribution, i.e. when the chemical

potential of electrons satisfies m = kBT ln n. The generalized

Einstein relationship has the form56,57

Dn

un
¼ 1

q

n

ðdn=dmÞ ð15Þ

The subject of application of mobility–diffusion relation in

disordered conductors became of interest in the early 1990s.

Deviations from eqn (14) were found, first, by Monte Carlo

simulation of hopping drift and diffusion of carriers in a lattice

with an array of hopping sites with a Gaussian distribution of

site energies.58–60 This was observed experimentally in hole

transport in 1,1-bis(di-4-tolylaminophenyl)cyclohexane.61

Deviations were also found by Gu et al. in measurements of

transport in hydrogenated amorphous silicon with exponential

DOS.62,63 However, the interpretation of experimental results

was not clearly established at that time due to the complex

carrier distribution in the time-of-flight technique.64 The Ein-

stein relation for transport in the exponential density of states

(DOS) was first analyzed by Ritter et al.65 For the Gaussian

DOS, it was applied by Roichman and Tessler66 and by other

authors.66–73 The current understanding of this subject has

been recently summarized.74

However, eqn (15) is very often referred to in solid-state

physics textbooks,75,76 where the generalized Einstein relation

is developed for degenerate semiconductors. Thus the peculia-

rities of the broad densities of states, and the possibility of

separately measuring the (chemical) diffusion coefficient and

mobility, were not addressed, and there has been confusion in

the past, regarding which the diffusion coefficient entering in

eqn (15) is. This is discussed in the Appendix. It is the opinion

of the present author that such confusion is removed by

distinguishing the chemical and jump diffusion coefficient.

Therefore we use the following formulation of the generalized

Einstein relation, that is discussed in a recent paper.32 In terms

of the chemical diffusion coefficient we have

Dn

un
¼ wn

kBT

q
ð16Þ

This is another statement of eqn (15), see the Appendix. The

definition of the mobility is given in terms of the average

carrier velocity hv(F)i acquired under electrical field F, at low

field values.

un ¼
dhvðFÞi
dF

����
F¼0

ð17Þ

The mobility can also be defined on the basis of the difference

of effective charge carrier jump probability in the direction

along and against the electric field.77 From eqns (10) and (16),

un is proportional to the jump diffusion coefficient

un ¼
qDJ

kBT
ð18Þ

Eqn (18) is generally valid and has the form of the classical

Einstein relationship in eqn (14). However, as has already been

stated, DJ is not in general the diffusion coefficient appearing

in Fick’s law.

Eqn (18) is, of course, not new: it is routinely used for

example in analytic models and Monte Carlo simulations of

hopping transport in disordered materials, which are normally

restricted to the random walk of a single carrier.78 In calcula-

tions of hopping theory, it is a standard procedure to average

over spatial and energy configurations in order to find the

effective jump frequency and length that allow to calculate the

jump diffusion coefficient using eqn (8), and immediately the

mobility using eqn (18),78,79 see the Appendix for further

discussion.

The conductivity in eqn (13) can be expressed as

sn ¼ q2Dn
dn

dm
ð19Þ

The conductivity can also be written as34,80

sn = DnCm (20)

Eqn (20) is suggested in ref. 35 as a definition of the diffusion

coefficient. However, we have shown that Dn in eqn (20) is the

chemical diffusion coefficient that can be separately defined.

Therefore the conductivity–diffusivity relationship (20) is most

appropriately viewed as a direct expression of the generalized

Einstein relationship. One should remark that all three quan-

tities contained in eqn (20) (conductivity, chemical diffusion

coefficient, and chemical capacitance) are distinctly measur-

able with electrochemical methods.

Some authors use an alternative expression for the mobility

that relates to the chemical diffusion coefficient.42,57,81–83 It is

assumed that in a quasi-equilibrium situation only the elec-

trons within kBT of the Fermi level contribute significantly to

conductivity. The effective density of carriers n̂ is given by57

n̂ ¼ kBT
dn

dm
¼ n

wn
ð21Þ

Then one can define an effective carrier mobility from the

conductivity

sn = qn̂ûn (22)

Using eqn (13), we obtain

ûn ¼
qDn

kBT
ð23Þ

It should be noticed that un and ûn differ by the thermo-

dynamic factor, wn, cf. eqn (18).

2.4 Experimentally measured quantities

Before we enter the revision of particular transport models in

certain DOS, let us discuss the meaning of the different

quantities found from experiments. Our results relate only to

systems that are close to equilibrium, i.e. the carriers in all the

states of the distribution are thermalized to a steady-state

Fermi level. We also adopt the quasistatic approximation,80

meaning that the time for trapping–detrapping is substantially

shorter than the characteristic transit time across the sample.

Measurements are made by a small perturbation (indicated by

D) of different quantities. This procedure is routinely used in

electrochemical and photoelectrochemical systems, where the

electrode potential is proportional to electrons (or holes)

Fermi level.32 We do not list here all the different techniques,
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but only the essential points they have in common, see ref. 32

for a more general explanation.

(1) The conductivity is measured as a relation of electrical

current DI to voltage DV. This can be done at steady-state by

electrochemical gating,84,85 or as the low-frequency resistance

in impedance spectroscopy (IS).86

(2) The chemical capacitance is measured as a relation of

charge DQ to voltage DV, when the voltage displaces the

Fermi level. This can be done by step charging or else

obtaining the low-frequency capacitance from IS.33 In many

cases eqn (6) is a good approximation to eqn (5) and then the

DOS is directly measured by the chemical capacitance. How-

ever, this is not always true, for example eqn (6) gives incorrect

results at low carrier densities in a Gaussian DOS, as discussed

later. In general, the DOS cannot be measured directly, but

has to be deconvoluted in eqn (6) from Cm, that is the

measured quantity.87 Alternatively, the DOS can be obtained

from thermally stimulated current (TSC) methods, which also

require demerging the experimental signal.88 On the other

hand, the carrier density n can be found readily integrating

the chemical capacitance with respect to voltage, eqn (2).

(3) The chemical diffusion coefficient of electrons, Dn, is

directly measured by transient methods (either in time or

frequency domain) such as IS.29 The determination of Dn

consists of inducing a disequilibrium by a voltage step, DV,
and taking the time constant for equilibration, that relates to

the transit time for diffusion across the sample. These methods

are very common in the electrochemistry of ionic conductors,

see, e.g., ref. 89 and 90.

(4) In electrochemical systems the mobility is found from the

conductivity and the carrier density by eqn (13).91 In organic

conductors it is often measured in the space-charge limited

conduction regime, or by time-of-flight method. Eqn (20)

indicates that if one divides the conductivity by the chemical

capacitance, the resulting quantity is not the mobility, but the

chemical diffusion coefficient.

3. Multiple trapping models

As mentioned in the Introduction, multiple trapping models

are based on a net distinction between the role of electronic

states above and below a mobility edge. This distinction is in

accord with the classical semiconductor physics, where all

localized states in the bandgap, below the conduction band

edge, are traps. In organic conductors, the width of the bands

are very narrow and extended states are rarely observed.88

Nonetheless in systems dominated by hopping between loca-

lized states, multiple trapping transport is recovered to a

certain extent with the concept of the transport energy, as

discussed below in more detail. In this section we treat the

multiple trapping models proper, and we derive a set of

general relationships that are valid for any particular distribu-

tion of traps and transport mechanism.

Multiple trapping model entails by definition the effect of

some trap levels over the rate of displacement through trans-

port states. Such an effect can be described by the full set of

transport-kinetic equations of the model, that provides the

system’s response in any required set of conditions. However,

if trapping and detrapping are fast processes, then electron

trapping kinetics can be readily described in terms of electron

densities in transport and trap states, and this second ap-

proach will be adopted herein.80 This is a consequence of the

principle of detailed balance,92 that links the kinetic constants

for trapping and detrapping to the equilibrium occupancies.80

A recent, general analysis93 shows that the first, general,

approach reduces to the second one whenever the traps can

be considered in quasi-equilibrium conditions.

3.1 General relationships

We call the transport states a set of states where spatial

displacement of carriers occurs, with a DOS g0(E), total

number N0, number of carriers n0, and the chemical capaci-

tance C0
m. The transport mechanism can consist of band

transport, hopping, etc. Whatever the case, the displacement

of electrons is characterized by an effective jump frequency

hn0i, a jump diffusion coefficient, D0
J, and the resulting chemi-

cal diffusion coefficient D0
n,

D0
n ¼

q2n0

kBT

1

C0
m

 !
D0

J ð24Þ

All these transport coefficients related to the transport

states may depend on the Fermi level (or carrier density).

The second element of a multiple trapping model is a

distribution of deeper localized states (below the mobility

edge), gL(E), with the total number NL, the number of carriers

nL, and the chemical capacitance CL
m . There is no hopping

between the states in the deeper levels; these states only trap

and release the carriers in the transport levels. Note the

relationships

n = n0 + nL (25)

Cm ¼ C0
m þ CL

m

¼ C0
m 1þ @nL

@n0

� � ð26Þ

for the total carrier density and total chemical capacitance,

respectively.

The central kinetic relationship in the multiple trapping

models is the following

nhni = n0hn0i (27)

where hni is the average jump frequency for all the carriers.

Eqn (27) uses the quasi-static approximation (so that the trap

dynamics is removed) and expresses the average number of

transitions in the transport levels either in terms of carriers in

the transport levels or in terms of all the carriers in the system.

It follows from eqn (27) that the jump diffusion coefficient

relates to D0
J as

DJ ¼
n0

n
D0

J ð28Þ

Using eqns (12) and (26), the thermodynamic factor can be

written as

wn ¼
q2n

kBT

1

C0
m

1þ @nL
@n0

� ��1
ð29Þ
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Hence, the chemical diffusion coefficient has the general

form29

Dn ¼ 1þ @nL
@n0

� ��1
q2n0

kBT

1

C0
m

 !
D0

J

¼ 1þ @nL
@n0

� ��1
D0

n

ð30Þ

where we have applied eqn (24) in the last equality. Alterna-

tively, we can write eqn (30) as

Dn ¼
C0

mðEFÞ
C0

mðEFÞ þ CL
m ðEFÞ

D0
n ð31Þ

The effect of trapping in the chemical diffusion coefficient is

dominant when @nL/@n0 c 1. In this case the result is

Dn ¼
@n0
@nL

� �
D0

n ð32Þ

which can also be expressed

Dn ¼
C0

mðEFÞ
CL

m ðEFÞ
D0 ð33Þ

Using eqns (20) and (31) we obtain the following result for the

conductivity:

sn = DnCm = D0
nC

0
m (34)

From eqns (13), (16) and (28) we can also express the

conductivity in terms of the carrier density and jump diffusion

coefficient

sn ¼
q2n

kBT
DJ ¼

q2n0

kBT
D0

J ð35Þ

Note that the quantities in the last terms of eqns (34) and (35)

depend only on the properties of the transport states.

3.2 Interpretation of multiple trapping models

Let us discuss the general implications of these results for the

interpretation of transport in multiple trapping systems:

(1) Eqn (28) indicates the classical result94 that the mobility

in the presence of the traps is reduced by a factor correspond-

ing to the proportion of carriers in the transport states to total

number of carriers.

(2) Eqns (32) and (33) show that the chemical diffusion

coefficient in the presence of traps is reduced by the relation-

ship of free to trapped number of electrons for a small

variation of the Fermi level. This prefactor describes the delay

of response of the chemical diffusion coefficient (in the quasi-

static approximation80), with respect to the free electrons

diffusion coefficient (in transport states), by the trapping and

detrapping process.80,95 Such delay is unavoidable when mea-

suring the chemical diffusion coefficient by any transient

technique, since the release of trapped carriers introduces

additional time to reach quasi-stationary conditions.

(3) Eqn (34) shows that the conductivity is determined

exclusively by the transport level and is completely independent

of the presence and distribution of traps. The steady-state

conduction is not affected by the trapping process, because the

traps remain in equilibrium. Alternatively, one can view

conduction as the result of the displacement of the whole

electron density, n, with a smaller jump diffusion coefficient,

eqn (35). However, it should also be remarked that the

introduction of traps can have important effects in the stea-

dy-state conduction process. The charged traps modify sub-

stantially the electrical field distribution, which dominates the

steady-state drift currents in OLEDs, for example. On the

other hand, in practice the introduction of dopants in organic

systems may modify the transport states, by reducing their

energy, and in this case the conductivity will be modified.88

Finally, in a system with very slow traps, the conductivity

depends heavily on the time constants of the traps, as dis-

cussed in detail elsewhere.93

3.3 Band transport

To conclude the general analysis of multiple trapping models,

we consider the usual situation in which the transport level E0

consists of the lower edge of the conduction band, while the

trap states are situated below, in the bandgap. If we restrict

our attention to the domain of potentials in which the Fermi

level remains below E0, so that we avoid degeneracy effects,

the free carriers in extended states are well described by

Boltzmann statistics. Eqn (35) can be simplified as

wn ¼
n

n0

1

1þ @nL
@n0

ð36Þ

In eqn (36) we can separate two cases. If the free carriers are

dominant (which usually occurs when the Fermi level ap-

proaches the conduction band) then wn = 1. According to

eqn (40), below, the term in parentheses in eqn (24) is 1, and we

have D0
n = D0

J = �D0 for the free carriers. On the other hand, if

the traps are dominant, then

wn ¼
nL

n0

@n0
@nL

ð37Þ

This last equation can be written in terms of derivatives of

chemical potentials for free and localized carriers:

wn ¼
@m0
@mL

ð38Þ

4. Simple models with discrete levels

4.1 Transport by hopping in a single level

The first application we discuss is the transport of electrons by

hopping between neighbor localized sites of a unique energy

level E0 with a volume density N0. Transport coefficients in

this model are given in ref. 29 and the Einstein relation is

discussed in ref. 96. We neglect percolation effects that are

discussed in section 7. The chemical capacitance has the value

Cm ¼
N0q

2

kBT
f ð1� f Þ ð39Þ

in terms of the occupancy f= n/N0. In the dilute limit (f{ 1),

corresponding to Boltzmann distribution, eqn (39) gives

Cm ¼
q2n

kBT
¼ q2N0

kBT
exp½�ðE0 � EFÞ=kBT � ð40Þ
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The general shape of the capacitance, shown in Fig. 1a,

forms a peak at the potential EF = E0, at which the occupancy

f = 1/2. The mean effective jump frequency is

hni = �n0(1 � f) (41)

where �n0 is the rate constant for hopping from an occupied site

to an empty site at the distance R = (N0)
�1/3. The jump

diffusion coefficient is

DJ ¼
hni
N

2=3
0

ð42Þ

and the mobility has the form

unðEFÞ ¼
q�n0

kBTN
2=3
0

ð1� f Þ ð43Þ

The chemical diffusion coefficient is a constant, Dn = �D0 =

�n0R
2. There is a strong difference between mobility and

diffusivity due to the exclusion effect, see Fig. 1c. Since un
relates to the random walk displacement of electrons, it

decreases when carrier density is high, due to the fact that

hopping probability decreases when the neighbor sites becom-

ing occupied, reduces, eqn (43). In contrast to this, the

chemical diffusion coefficient describes the net flux under a

gradient of the concentration, and in this case, the exclusion

effects of forward and backward jumps between two neighbor

sites counterbalance, giving the constant Dn, as explained in

ref. 45. Central to our discussion is the fact that this difference

between mobility and diffusion coefficient is completely de-

scribed by the thermodynamic factor, as indicated in eqn (16).

In the present example it is

wn = 1/(1 � f) (44)

see Fig. 1b.

A relevant instance of the difference between mobility and

chemical diffusion coefficient is found in the study43 of electron

transport in an array of quantum dots with a series of discrete

energy levels. By filling the 1S0 level, the diffusion coefficient

decreases by a factor of 10, while the mobility shows a much

stronger decay by three orders of magnitude, which is ob-

served in measurements.97

Returning to our single-level example, the peak of the

conductivity, shown in Fig. 1b, can be explained by the

combined behaviors of carrier density and mobility. At low

Fermi level the mobility is constant and the conductivity

increases with the increase of carrier density. Above

EF = E0 the density of electrons isEN0, but then, the mobility

starts to decrease because most of the transport states have

been occupied. As a result, the conductivity has the

same shape as the chemical capacitance, which is summarily

expressed in eqn (20).

4.2 Two-level (single trap) model

The simplest model of trap-limited transport is composed of a

transport level at energy E0 (for which we take the hopping

model described in section 4.1), and a trap level at energy E1

with volume density N1 = dN0, where d is a constant, see

Fig. 2. The model is discussed in ref. 98. In equilibrium the

occupancies of the two levels are determined by the equations

EF ¼ E0 þ kBT ln
f0

1� f0

� �
¼ E1 þ kBT ln

f1

1� f1

� �
ð45Þ

When the Fermi level increases, the two states are consecu-

tively filled up with carriers, Fig. 2a. Consequently, there are

two peaks in the chemical capacitance that corresponds to the

addition of two terms as those in eqn (39), one for each level,98

see Fig. 2b. The chemical diffusion coefficient is obtained from

eqn (31)

Dn ¼
�D0

1þ d f1ð1�f1Þ
f0

ð46Þ

When the Fermi level lies deep below the trap state E1,

both E0 and E1 are populated following the ideal statistics

(f0, f1 { 1). Hence the thermodynamic factor is 1, Fig. 2b, and

the mobility and chemical diffusion coefficient in eqn (46) take

Fig. 1 Representation of several quantities for charge accumulation

and transport by hopping between localized states of a single energy

E0 = 0 eV. EF is the Fermi level potential. (a) Carrier density and

conductivity. (b) Chemical capacitance and thermodynamic factor. (c)

Mobility and chemical diffusion coefficient. The following parameters

were used in the calculation: N0 = 1.0 � 1020 cm�3, T = 300 K,

n0 = 1012 s�1, a = 10�7 cm.
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constant values

Dn ¼
�D0

1þ d exp½ðE0 � E1Þ=kBT �
ð47Þ

This result is known as the Hoesterey-Letson formula, from

their model developed for doped anthracene crystals.11

Changes in Dn and un appear when the deep states begin to

be more heavily occupied. Filling the deep traps reduces their

slowing down effect, hence the chemical diffusion coefficient

increases rapidly, Fig. 2c, until the deep state is filled com-

pletely, at which point the chemical diffusion coefficient be-

comes a constant identical to the single level case (section 4.1).

The mobility (related to the jump diffusion coefficient), shows

an additional feature: the decrease at high carrier density due

to the occupation of the transport states, already described in

section 4.1. While the trap state affects severely both Dn and un
with respect to the trap-free case, it should be noticed that the

conductivity, shown in Fig. 2a, is not changed at all with

respect to Fig. 1a. This is expected as explained in section 3.2.

5. Carrier transport in exponential DOS

5.1 Multiple trapping in exponential DOS

An exponential distribution of localized states in the bandgap,

usually applied in amorphous semiconductors, has the expres-

sion

gLðEÞ ¼
NL

kBT0
exp½ðE � E0Þ=kBT0� ð48Þ

where NL is the total density and T0, is a parameter with

temperature units that determines the depth of the distribution

below the transport level E0. The main features of this model

are amply described in recent papers29,32 and only a summary

of the results, shown in Fig. 3, is given here. At room

temperature the chemical capacitance is well described by

Fig. 2 Representation of several quantities for charge accumulation

and transport by hopping between localized states in a material with a

single bandgap state of energy E0 = 0 eV, and a trap level at E1 =

�0.2 eV. EF is the Fermi level potential. (a) Carrier density and

conductivity. (b) Chemical capacitance and thermodynamic factor.

(c) Mobility and chemical diffusion coefficient. The following para-

meters were used in the calculation: N0 = 1.0 � 1020 cm�3, N1 = 2N0,

T = 300 K, n0 = 1012 s�1, a = 10�7 cm.

Fig. 3 Representation of several quantities for charge accumulation

and transport by multiple trapping in an exponential DOS with the

transport level at energy E0 = 1 eV. EF is the Fermi level potential. (a)

Carrier density and conductivity. (b) Chemical capacitance and ther-

modynamic factor. (c) Mobility and chemical diffusion coefficient. The

following parameters were used in the calculation: N0 = 1.0 � 1021

cm�3, N1 = 5.0 � 1019 cm�3, T = 300 K, T0 = 1400 K,
�D0 = 10�2 cm2 s�1.
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the approximation of eqn (6). Therefore we have

CL
m ¼

NLq
2

kBT0
exp½ðE � E0Þ=kBT0� ð49Þ

with a slope 1/kBT0 in log-linear representation shown in

Fig. 3b. Note that the model is valid only for a deep distribu-

tion such that T/T0 o 1. From eqn (49), the exponential

distribution has the following property

n ¼
Z EF

�1
CL

mdEF ¼
kBT0

q2
CL

m ð50Þ

Therefore, the thermodynamic factor in eqn (12) is

constant,29

wn = T0/T (51)

For the typical values of T0, wn E 2–5 at room temperature, as

shown in Fig. 3b. The diffusion–mobility ratio is independent

of temperature:

Dn

un
¼ kBT0

q
ð52Þ

Eqn (52) has been derived by Ritter et al. using eqn (15).65 A

similar result was obtained by Baranovskii et al.99,100 for

hopping electrons in non-equilibrium conditions at low tem-

perature. The Einstein relation for multiple trapping in ex-

ponential DOS has been analyzed by Nguyen and

O’Leary.67,68 They also derived the result in eqn (51) and

therefore explained the difference between mobility and diffu-

sion coefficient in a-Si :H previously reported by Gu et al.62

The calculation of the chemical diffusion coefficient with

eqn (33), gives

Dn ¼
C0

m

CL
m

�D0

¼ N0T0

NLT
exp �ðE0 � EFÞ

1

kBT
� 1

kBT0

� �� �
�D0 ð53Þ

According to eqn (52) the mobility and chemical diffusion

coefficient display identical dependence on the Fermi level, see

Fig. 3c. When approaching the conduction band, the chemical

capacitance is dominated by the free carriers, eqn (40), the

thermodynamic factor decays to the ideal value 1, and the

transport coefficients take the constant value for the free

electrons; as already explained, in this domain all the traps

have been saturated and we observe the kinetics of free

electrons. The conductivity shown in Fig. 3a is unaffected by

the presence of traps; it is governed only by the free carrier

density, as discussed above.

Recently, this model has been extensively applied in nano-

structured metal oxides for DSC,1,2,101,102 where the different

features exposed in Fig. 3 (for the multiple trapping regime in

which nL c n0) have been repeatedly observed: the exponen-

tial dependence of the chemical capacitance33,53 and chemical

diffusion coefficient on the Fermi level,28,103,104 the constant

thermodynamic factor,30 and the dependence of conductivity

only on free carrier density.103,105

As an illustration of this model we show in Fig. 4 the

experimental results of chemical capacitance and diffusion

Fig. 4 Representation of several quantities for charge accumulation

and transport at different temperatures, in a high efficiency (10.2%)

DSC. The experimental points are the chemical capacitance Cm and

conductivity sn, that are obtained from IS data on capacitance and

transport resistance reported in ref. 103, using the cell area 0.18 cm2

and active nanocrystalline TiO2 electrode thickness 12 mm. (a) Che-

mical capacitance. The fit line is ln Cm = �8.70 + V/0.0704,

corresponding to T0 = 808 K. The carrier density is calculated with

eqn (50). (b) Electron conductivity. The fit lines are ln s273 K
n =

�34.6 + V/0.0245, ln s333 K
n = �28.9 + V/0.0306. (c) Chemical

diffusion coefficient Dn calculated with eqn (20), and jump diffusion

coefficient DJ calculated with eqn (13) and w273 K
n = 2.95, w333 K

n =

2.42. The lines are guides to the eyes. (d) Mobility calculated with eqn

(18); the lines are guides to the eyes.
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conductivity derived from IS measurement in ref. 103 at

different temperatures. First, the chemical capacitance in

Fig. 4a shows the characteristic exponential dependence and

is independent on temperature, confirming that the capaci-

tance measures the DOS at the Fermi level as indicated in eqn

(6). In contrast to this, the conductivity in Fig. 4b shows a

strong dependence of temperature. The fit to straight lines

gives values close to the thermal energies, kBT = 0.0236 and

0.0288 eV at 273 and 333 K, respectively. Therefore, the

conductivity is thermally activated as expected from eqn

(34), assuming that the free electrons diffusion coefficient,
�D0, depends weakly on the temperature. Despite this observa-

tion, the value of �D0 cannot be clearly identified, due to

uncertainties about the carrier transport mechanism above

the measured potential range (i.e., band transport or hopping

to the transport energy),103 and this is discussed in the next

section. The rest of quantities: carrier density, chemical diffu-

sion coefficient, jump diffusion coefficient, and mobility, are

derived from the previous ones and are also shown in Fig. 4.

5.2 Hopping in exponential DOS

The hopping model in an exponential distribution of states

was developed in connection with amorphous semiconduc-

tors.21,22 The difference with multiple trapping is that the

carriers move by direct transitions between the localized states

of the distribution in eqn (48). The transition probabilities are

given by the upward and downward jump rates

n" ¼ �n0 exp �2
r

a
� Ej � Ei

kBT

� �
ðEj4EiÞ; ð54Þ

n# ¼ �n0 exp �2
r

a

h i
ðEj � EiÞ

where �n0 is the attempt-to-jump frequency, r is the distance

between sites, a is the localization radius, and Ej, Ei, are the

energies of the target and starting sites, respectively.

The concept of transport energy, Etr, has already been

discussed in the Introduction.20,21 The following derivation

is presented in ref. 106 and 107. In equilibrium the transport is

governed by the fastest hop of a charge carrier. The most

probable upward jump corresponds to an optimized combina-

tion of the distance and energy difference, eqn (54). Let

a = N�1/3L be the mean distance between localized sites. The

average distance for states below the energy E1 is

hrðE1Þi ¼
4p
3

Z E1

�1
gðEÞdE

� ��1=3

¼ 4p
3

� ��1=3
exp �E1 � E0

3kBT0

� �
a

ð55Þ

Now one can find the energy that optimizes the upward jump

rate nm, and the result is that the fastest hops occur in the

vicinity of the transport energy, given by

Etr = E0 � DEtr (56)

where

DEtr ¼ 3kBT0 ln
3aT0

2aT

4p
3

� �1=3
" #

ð57Þ

independently of the energy of the starting site.106 The average

jump distance is

hrðEtrÞi ¼
3T0

2T
a ð58Þ

Recently, we have reported108 the calculation of the chemical

diffusion coefficient for the exponential distribution in the

transport energy approximation. The calculation uses two

main ingredients of previous results: (i) the average jump

frequency given by Baranovskii et al.,106 and (ii) the averaging

procedure used by Arkhipov et al.79 to calculate the jump

diffusion coefficient. While the latter procedure has been

criticized109 (in terms of the percolation considerations that

are commented on in section 7), it seems so far as the only

available procedure to obtain an analytically closed expression

of Dn (without the unknown prefactors that appear with the

percolation criterion110) that can be directly compared with

the experimental results. The result of our calculation gives108

the mean jump frequency

hni ¼ n0 1� T

T0

� �
exp �3T0

T
� ðEtr � EFÞ

1

kBT
� 1

kBT0

� �� �
ð59Þ

So the chemical diffusion coefficient is

Dn ¼wnhr2ðEtrÞihni

¼ 9T3
0

4T3
1� T

T0

� �
exp �3T0

T
� ðEtr � EF Þ

1

kBT
� 1

kBT0

� �� �
a2n0

ð60Þ

By comparison with eqn (53), this last result shows, as

expected, that in quasi-equilibrium conditions the hopping

transport behaves in a similar way to multiple trapping, with

the transport energy playing the role of the extended states

level E0. All these approximations require that the Fermi level

is well below the transport energy.

The application of eqn (60) to the experimental results in

Fig. 4 shows108 that the hopping model gives reasonable

materials parameters and also explains the low situation of

transport level that was already observed in previous experi-

mental work.111 However, since multiple trapping and hop-

ping model give similar results, it was concluded108 that more

experimental work is needed, especially in the high carrier

density regime, to clarify the transport mechanism in nano-

structured TiO2 surrounded with liquid electrolyte.

6. Carrier transport in organic conductors

6.1 General properties of the mobility

Carrier transport in disordered organic materials has attracted

a lot of interest in recent years in relation with new applica-

tions such as OLEDs and organic electronic devices. Charge

carrier transport in molecular and organic materials is domi-

nated by charge localization resulting from polarization of the

medium and relaxation of molecular ions, and transport

occurs via a sequence of charge-transfer steps from one

molecule to another. Even in conjugated polymers with well-

ordered chains, macroscopic transport is impossible unless the

carrier can hop to avoid the chain break and defects.112 Most
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work on transport in disordered organic conductors follows a

Gaussian disorder model developed by Bässler14 based on

hopping sites with a Gaussian distribution of site energies

gðE;E1Þ ¼
N1ffiffiffiffiffiffi
2p
p

s1
exp �ðE � E1Þ2

2s21

" #
ð61Þ

where E1 is the center of the distribution and s1 is the width.

Let us briefly discuss which are the basic observed features

of the mobility in organic conductors.34 The mobility is

obtained by different techniques (electrochemical,113–119 field-

effect transistor, etc.), and the results may depend on the kind

of measurement and preparation method,37 as shown in Fig. 5

for electrochemical measurement of two poly(3-hexylthio-

phene) films.120 In general, the conductivity and mobility in

disordered organic materials show an extremely complex

phenomenology, and the properties of electrochemically

doped polymers often depend on the experimental conditions

such as solvent and type of counterions. However, some

regular properties have emerged. In most cases, the mobility

shows a remarkable variation on Fermi level or carrier con-

centration, as seen in Fig. 5b. At low to moderate carrier

density levels un exhibits a constant (or decreasing) region,

while at high carrier concentration, it first increases sharply,

sometimes over several orders of magnitude, and later de-

creases.113,114,120,121

These results can be described using models of increasing

richness. First, the simple two-level model of section 4.2

already explains qualitatively the general features observed

in the electrochemical measurement of the mobility of polar-

ons in conducting polymers,113–119 see Fig. 2c. The single trap

model also describes many features of doped organic crys-

tals.11 However, it is widely agreed that disordered organic

conductors present a Gaussian distribution as indicated in eqn

(61), and this is in fact directly observed by capacitance

measurements.122,123 Even the separate broadened contribu-

tions of polarons and bipolarons can be detected in the

chemical capacitance.34 Therefore the next step is to use the

multiple trapping model with the Gaussian distribution in-

stead of a single trap level,124,125 and this will be described in

section 6.2. It is also realized that organic conductors normally

lack extended states as their inorganic counterparts.88 This

requires to consider the hopping model, where the only

possible carrier displacement mechanism consists of the tran-

sition between the localized states in the Gaussian distribution.

This approach explains well the concentration dependence of

the mobility,26,79 and will be discussed in section 6.3. In

addition, it is important to discuss the effects of traps induced

by impurities or doping, which requires to extend the DOS to a

bimodal Gaussian.79,126 This type of model will be described in

section 6.4.

6.2 Multiple trapping in the Gaussian DOS

The multiple trapping model consisting of the Gaussian DOS

of eqn (61) and a conduction band level at energy E0 has

mainly been used in connection with OLED devices.124,125

This model can be considered an extension of the two-level

system of section 4.2, by the introduction of disorder in the

trap. It is also interesting to discuss this model in detail

because it provides a simple view of many features of the

hopping model described later.

The results of our calculations, applying the general expres-

sions derived in section 3.1, are shown in Fig. 6 and 7. For a

detailed understanding of the behaviour of the transport

coefficients it is important to review the properties of the

carrier distribution in a Gaussian DOS.14 We compute the

carrier distribution when the Fermi level is low enough that

the occupancy is well described by Boltzman distribution. This

Fig. 5 (a) Potential dependences of doping levels and conductivities

and (b) mobilities for two poly(3-hexylthiophene) films with identical

chemical compositions. One of the films is obtained by electropoly-

merization of 3-hexylthiophene (as-grown film,K,’) and the other is

prepared by casting a solution dissolving the as-grown film (cast film,

J, &). Reprinted from Materials Letters, vol. 61, X. Jiang, Y.

Harima and R. Patil, A transport study on as-grown and cast films

of electrogenerated poly(3-hexylthiophene), p. 4687, Copyright (2007),

with permission from Elsevier.120
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domain corresponds to the region in which wn E 1 in Fig. 6b.

The carrier distribution is given by

nL (E,EF) = g(E,E1)exp[�(E � EF)/kB T] (62)

By algebraic manipulation of eqn (62) we obtain

nL (E,EF) = g(E,Em)exp[�(Es � EF)/kB T] (63)

where

Em ¼ E1 �
s21
kBT

ð64Þ

Es ¼ E1 �
s21

2kBT
ð65Þ

Fig. 6 Representation of several quantities for charge accumulation

and transport by multiple trapping in a Gaussian DOS centered at

E1 = 0 eV with dispersion s1 = 0.1 eV and a transport level at energy

E0 = 0.4 eV. EF is the Fermi level potential. (a) Carrier density and

conductivity. (b) Chemical capacitance and thermodynamic factor. (c)

Mobility and chemical diffusion coefficient. In (b) and (c) the thermo-

dynamic factor and chemical diffusion coefficient are shown also for

different values of the transport level E0, as indicated. The following

parameters were used in the calculation: N0 = 1.0 � 1021 cm�3,

N1 = 1.0 � 1020 cm�3, T = 300 K, �D0 = 0.46 cm2 s�1.

Fig. 7 Representation of several quantities for charge accumulation

and transport by multiple trapping in a Gaussian DOS centered at

E1 = 0 eV with dispersion s1 = 0.1 eV and a transport level at energy

E0 = 0.4 eV. EF is the Fermi level potential. (a) Density of states. The

dashed lines indicate the occupied states at different values of Fermi

level, as indicated. (b) Chemical capacitance. The dashed lines are

calculated from different approximation formulas as discussed in the

main text. (c) Chemical diffusion coefficient. The dashed line is

calculated with the approximation Dn = [C0
m/q

2g(EF)] �D0. (d)

Mobility as a function of the occupation of the traps. The dashed line

is calculated in the same approximation as in (c), using the thermo-

dynamic factor. The following parameters were used in the

calculation: N0 = 1.0 � 1021 cm�3, N1 = 1.0 � 1020 cm�3,

T = 300 K, �D0 = 0.46 cm2 s�1.
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According to eqn (63), when EF { Em, the carriers form a

Gaussian distribution of width s1 centered at energy level Em,

independently of the Fermi level.14,18,124 This is shown in

Fig. 7a. In addition, using eqn (63) we obtain that the total

carrier density in localized states is given by

nLðEFÞ ¼
Zþ1
�1

nLðE;EFÞdE

¼ N1 exp½�ðEs � EFÞ=kBT �

ð66Þ

According to eqn (66), the number of carriers in a Gaussian

DOS when EF { Em, is the same as in a monoenergetic level at

Es with total density N1. Therefore at EF { Em the multiple

trapping Gaussian model is identical to the two level (single

trap) model of Fig. 2, taking Es as the energy of the deep level.

From eqn (66), the chemical capacitance has the value

CL
m ¼

q2N1

kBT
exp½�ðEs � EFÞ=kBT � ð67Þ

Therefore, when only the deep tail of the DOS is occupied, the

capacitance is exponential, as indicated in Fig. 7b. Note that

the zero-temperature approximation of eqn (6) (that requires

that only states below the Ferrmi level are occupied) is invalid

in this region in which the majority of carriers do not lie below

the Fermi level, but instead, are above the Fermi level,124

symmetrically distributed around Em, as shown in Fig. 7a.

Thermodynamic factors of the Gaussian distribution, as

well as the implications for device modelling, have been amply

discussed in the works of Roichman and Tessler66,72 and Peng

et al.69,71,73

In Fig. 6c the diffusion coefficient is calculated for different

values of the transport level. It is observed that when the

transport level is above the center of the Gaussian DOS, the

diffusion coefficient and the mobility vary over many orders of

magnitude. It is also observed that the variation of the

diffusion coefficient is drastically modified by the position of

the transport level.

Let us discuss the physical origin of the shape of the

chemical diffusion coefficient. The saturation to a constant

value at high Fermi level is due to the assumption of band

transport, as before in Fig. 3c. However, in contrast with the

exponential distribution, in the Gaussian case Dn shows also a

constant value at very low Fermi level in Fig. 6c. This is shown

in more detail in Fig. 7c.

Using eqns (33), (40) and (67) we can obtain the chemical

diffusion at very low concentration

Dn ¼
C0

m

CL
m

�D0 ¼
N0

N1
exp½�ðE0 � EsÞ=kBT � �D0 ð68Þ

Eqn (68), which follows directly from the Hoesterey-Letson

formula in eqn (47), gives the constant value of Dn at low

Fermi level observed in Fig. 6c and 7c. Since wn = 1 the

constant mobility at low concentration is obtained from eqns

(14) and (68). The transport coefficients are governed by

thermal excitation between the effective trap level Es and the

transport level E0. In Fig. 6c the changes of the lower limit of

the diffusion coefficient were obtained by shifting the transport

level; similar changes will be obtained by changing the dis-

order parameter s1, which modifies the level Es.

Our next step is to give an analytical expression forDn in the

region where it rapidly increases between the two constant

values at the extremes. In order to apply again eqn. (33), let us

observe the features of the capacitance in Fig. 7b. When EF 4
Em, the zero temperature limit of the Fermi–Dirac function

becomes a good approximation. Most of the carriers lie below

the Fermi level, and eqn (6) describes well the capacitance, as

is indicated in Fig. 7b. Therefore we can calculate an approx-

imation to the chemical diffusion coefficient as

Dn ¼
C0

mðEFÞ
q2gðEF;E1Þ

�D0

¼N0

N1

ffiffiffiffiffiffi
2p
p

s1
kBT

exp
ðEF � E1Þ2

2s21
� E0 � EF

kBT

" #
�D0

ð69Þ

With algebraic manipulation of the exponent we obtain:

Dn ¼
N0

N1

ffiffiffiffiffiffi
2p
p

s1
kBT

exp
ðEF � EmÞ2

2s21
� E0 � Es

kBT

" #
�D0 ð70Þ

The diffusion coefficient is a parabola (in a semilogarithmic

plot) centered at Em, shown in Fig. 7c in a dashed line. It is

observed that eqn (70) provides a very good description of the

steep increase of the chemical diffusion coefficient over many

orders of magnitude. Using the thermodynamic factor and eqn

(16), we also obtain from eqn (70) the rise of the mobility as a

function of the concentration, shown in Fig. 7d.

In summary, all the properties of the chemical diffusion

coefficient in a multiple trapping model with Gaussian dis-

order have been explained with simple considerations. Many

of the properties are explained by the single trap model, taking

into account the effective energies for carrier distribution and

for carrier activation in eqns (64) and (65), respectively. The

difference between the two models is that the rise of the

chemical diffusion coefficient is linear (in a semilogarithmic

representation) for the single trap, and parabolic for the

Gaussian disorder.

6.3 Hopping transport in the Gaussian DOS

The mobility dependence on concentration in organic con-

ductors has amply been studied in the last decade, on the basis

of the hopping conduction in the Gaussian disorder mod-

el.18,25,26,79,126–130 Here we give a brief summary of the main

trends of these models. We calculate the transport properties

on the basis of the transport energy concept as formulated by

Arkhipov et al. in a model that includes high carrier density

effects.79 This model and later developments26,130,131 consti-

tute the most successful description available of the mobility

dependence on concentration in electrochemically doped poly-

mers.120 Similar results are obtained by direct solution of the

master equation.128,132

As discussed above in the exponential distribution, in

equilibrium conditions carriers most probably jump from the

deep sites to a hopping site that belongs to the transport

energy of the level Etr, which is determined by the
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transcendental equation79Z Etr

�1
gðEÞ½1� f ðE � EFÞ�ðEtr � EÞ3dE ¼ 6

p
kBT

a

� �3

ð71Þ

The terms g(E)(1 � f) in the integrand of eqn (71) describe the

density of vacant target sites for hopping. The average carrier

jump rate is17

hni ¼ v0

n

Z Etr

�1
gðEÞf ðE � EFÞ exp �

Etr � E

kBT

� �
dE ð72Þ

It has been pointed out109 that the jump frequency in eqn (72)

should include the tunneling term exp(�2r/a), however here

we maintain the original formulation of the model.79 The

average square jump distance has the expression

hr2i ¼
Z Etr

�1
gðEÞdE

� ��2=3
ð73Þ

The jump diffusion coefficient can be calculated by eqn (8) as

the product of eqns (72) and (73).

The results of this model are shown in Fig. 8 and 9, and two

domains of behaviour can be distinguished. First at low carrier

densities, the transport energy remains constant, Fig. 8b, and

Fig. 8 Representation of several quantities for carrier accumulation and transport by hopping between localized states according to the transport

energy concept, in a material with a Gaussian DOS (E1 = 0 eV, s1 = 0.1 eV). EF is the Fermi level potential. (a) Carrier density. Also shown is the

DOS in linear scale. (b) Transport energy. (c) Chemical capacitance and thermodynamic factor. (d) Average jump frequency. (e) Mobility and

chemical diffusion coefficient. (f) Conductivity. The following parameters were used in the calculation: N1 = 1021 cm�3, T= 300 K, �n0 = 1013 s�1,

a = 2 � 10�8 cm.

Fig. 9 Representation of the chemical diffusion coefficient as a function

of the Fermi level potential EF, for transport by hopping between

localized states according to the transport energy concept, in a material

with a Gaussian DOS (E1 = 0 eV, s1 = 0.2 eV). Also shown is the DOS

on a linear scale. The dashed lines are obtained with the approximation

formula of multiple trapping, with a constant (Etr0 = �0.04 eV) and a

variable value of the transport energy, Etr, as indicated. The following

parameters were used in the calculation: D0 = �n0/N
2/3
1 , N1 = 1021 cm�3,

T = 300 K, �n = 1013 s�1, a = 2 � 10�8 cm.
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in this domain, as is well known, the occurrence of the effective

transport level effectively reduces the hopping to multiple

trapping, with Etr playing the role of the mobility edge.

Therefore we obtain the characteristic behaviour of the che-

mical diffusion coefficient and mobility in multiple trapping,

Fig. 8e, consisting of a constant value at E o Em and a rise

when the tail of the DOS becomes occupied.

Second, at higher carrier densities, the transport level Etr

shifts upwards,79 see Fig. 8b, due to the exclusion factor (1� f)

in eqn (71). Consequently, the average jump rate hni declines,
Fig. 8d, which causes a decrease of the transport coefficients,

Fig. 8e, and also of the conductivity, Fig. 8f. This behaviour is

well documented in the electrochemical measurement of the

mobility of conducting polymers.91,115,116,118,119,133 We remark

that these features, due to the increasing localization of

carriers by the full occupation of the DOS, were already

described above in the single and two level systems, Fig. 1

and 2, respectively.

It must also be noted that when the DOS is more than half

occupied (i.e., at EF 4 E1), the conditions of application of the

transport energy concept are not justified, and the results

plotted in Fig. 8 are only indicative. A more general treatment

based on the effective medium approximation (EMA), includ-

ing a very high carrier densities domain, has been presented

recently,26 and the behaviour is qualitatively similar.

Let us consider the values at low concentration (E o Em)

where the transport energy and chemical diffusion coefficient

are constant, Fig. 8b and e. Using the Boltzmann distribution

for f in eqn (72), and performing the integration as in eqn (66),

we readily obtain

hni ¼ �v0 exp½�ðEtr � EsÞ=kBT � ð74Þ

If the transport level is well above the center of the Gaussian

DOS, we may approximate hr2i= N�2/31 with a very low error.

Since the thermodynamic factor is wn = 1, the chemical

diffusion coefficient has the value

Dn ¼
�v0

N
2=3
1

exp½�ðEtr � EsÞ=kBT � ð75Þ

An equivalent expression of the mobility was given in ref. 17.

We have remarked that hopping transport reduces to multi-

ple trapping at low concentration. However, unlike in multiple

trapping, there are no extended states in the hopping model, so

the free carriers diffusion coefficient �D0 is not defined a priori.

Let us find the equivalent �D0 in the hopping model, assuming

that eqn (75) corresponds to the characteristic form of the

diffusion coefficient in eqn (33). The chemical capacitance of

the deep levels is given by eqn (67). On the other hand, the

chemical capacitance of the ‘‘transport’’ level is

C0
m ¼

q2N1

kBT
exp½�ðEtr � EFÞ=kBT � ð76Þ

Therefore, comparing eqns (75) and (33) we find

D0 ¼
�v0

N
2=3
1

ð77Þ

Following the same reasoning that led to eqn (70), we can

calculate an approximation to the chemical diffusion coeffi-

cient in the domain of increasing carrier density

Dn ¼
C0

mðEFÞ
q2gðEF;E1Þ

�D0

¼
ffiffiffiffiffiffi
2p
p

s1�n0
kBTðN1Þ2=3

exp
ðEF � EmÞ2

2s21
� EtrðEFÞ � Es

kBT

" # ð78Þ

In order to show more clearly this approximation, in Fig. 9 we

plot the diffusion coefficient for a Gaussian of very large

disorder, s1 = 0.2 eV, which causes Dn to vary over eight orders

of magnitude. First we consider in eqn (78) a constant (low

concentration) value of the transport energy, Etr0 = �0.04 eV.

Then Dn is an inverted parabola centered at energy Em, which

gives a good agreement with the exact result at intermediate

carrier densities, with a closed analytical expression. In Fig. 9 we

also plot eqn (78) allowing for the upward shift of the transport

energy, as in Fig. 8b. This gives a very good description Dn also

in the high carrier concentration domain.

6.4 Hopping transport in the Gaussian DOS with traps

The doping of disordered organic solids requires to consider two

Gaussian distributions that overlap, since both the intrinsic

transport states and the traps are affected by inhomogeneous

broadening. The recent papers26,126 give an extensive account of

the different behaviour of the mobility, according to the shape of

the distribution, and the dominant transport mechanism (i.e.,

trap-controlled, trap-to-trap hopping, etc.). Also significant is

the change of the DOS by coulomb interactions. The initial

mobility decrease in electrochemical measurements37 shown in

one of the samples in Fig. 5b is explained in terms of deep

Coulomb traps created by doping.130,131

We assume that the DOS has the form

gðEÞ ¼ N1ffiffiffiffiffiffi
2p
p

s1
exp �ðE � E1Þ2

2s1

" #

þ Ntrapffiffiffiffiffiffi
2p
p

strap
exp �ðE � EtrapÞ2

2strap

" #
ð79Þ

The first component with number density N1 is the intrinsic

Gaussian distribution of the organic material. The second

component with density Ntrap = dN1 is a deeper level, also

with a Gaussian distribution, that acts in a similar way as

traps. The results of our calculation using eqns (71)–(73) are

shown in Fig. 10.

By introducing a small density of traps (d = 0.01) at level

E2 o E1, it is observed that the mobility at low carrier density

decreases by one order of magnitude, while the conductivity

does not change at all. This is the common behaviour of multiple

trapping already discussed in previous sections; the lowering of

the mobility is compensated in the conductivity by the increased

number of carriers at traps. Introducing more abundant (d =

0.1) and deeper traps at level E3 causes some important mod-

ifications. First in Fig. 10b we appreciate that the traps shift

downwards the transport energy8 so that the center of the

intrinsic DOS becomes the transport level at low carrier den-

sities. Since now the carriers hop to a deeper (and higher density)

site than in the trap-free case, there is an increase of the

conductivity at low densities. This is because the traps serve as
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an effective transport band.8 In addition, the mobility changes

by three orders of magnitude, which is due to the larger

separation between the trap and transport level, compared to

the previous case. The enhancement of the mobility with carrier

density in the presence of traps was previously demonstrated by

numerical calculation based on the master equation.134,135

7. Percolation

In a system where carrier transport occurs by transitions

between localized sites (or regions), with variable connectivity

between the sites/regions, there are formed clusters of highly

connected domains, which may or not be connected to sur-

rounding clusters. There exists a threshold condition where a

cluster of infinite size occurs, and current can percolate across

the sample, and it is called the percolation threshold.136–138

Percolation is significant not only because of the onset of dc

conduction at certain critical concentration. In addition, above

the critical concentration the carriers will find out the least costly

pathway in terms of activated transitions. Therefore, in the

presence of widely varying local conductances, conduction

may occur in far from spatially homogeneous conditions.

Fig. 10 Representation of several quantities for carrier accumulation and transport by hopping between localized states according to the

transport energy concept, in a material with a Gaussian DOS (E1 = 0 eV, s1 = 0.1 eV), and two different traps distribution, as indicated: E2 =

�0.2 eV, s2 = 0.1 eV and E3 = �0.3 eV, s3 = 0.1 eV. EF is the Fermi level potential. (a) Carrier density. Also shown are the different DOS in

linear scale. (b) Transport energy. (c) Chemical capacitance. (d) Thermodynamic factor. (e) Conductivity. (f) Mobility and (g) chemical diffusion

coefficient. The following parameters were used in the calculation: N1 = 1021 cm�3, T = 300 K, �n = 1013 s�1, a = 2 � 10�8 cm.
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Percolation effect is very significant in the theory of hopping

conduction, where the difference in energy between hopping

sites translates into widely variable timescales for the possible

transitions. Therefore, the actual conduction path is deter-

mined by the faster connections that allow to obtain the

percolation pathway, since the addition of slower connections

does not contribute much to long range transport.12,13,19,139

The effect of percolation features prominently in the elec-

tron transport through redox centers in a solid matrix where

the center concentration can be readily varied.7,36,140–142 How-

ever, in these systems the redox centers undergo displacement

to a certain extent, from bounded motion around fixed posi-

tions, to long range diffusion. The electron transport is a

combination of redox center mobility and electron hopping

between centers. The work of Blauch and Savéant36 showed

that the physical motion can eliminate completely the critical

behaviour observed for static percolation.

A recent development of transport by redox exchange is the

functionalization of nanostructured metal-oxides, and consists

of a molecular layer adsorbed in the semiconductor surface

that serves as an electronic transport relay by redox transitions

between neighbour molecules. It was shown that the molecular

layer conductivity can be changed between n and p character-

istics, depending on the applied bias potential.143,144

Due to the widespread application of random nanoparticu-

late semiconductor networks in DSC and related systems,

there has been recent interest in establishing a relationship

between the geometry of the nanoparticulate array on the

macroscopic electron transport.145–150 Lagemaat et al. first

considered the relation between particle coordination number

and porosity in TiO2 nanoparticulate films and described

macroscopic transport in terms of the percolation

model.145,146 To further investigate these properties, a unique

model system of nanoporous TiO2 prepared by electrophoretic

deposition (EPD) technique has been reported, where a sys-

tematic change of the porosity is possible, reducing the thick-

ness of the film by pressing of deposited electrodes at different

pressures.150,151 For this system, it has been shown152 that the

electron diffusion coefficient follows well the Effective Medium

Approximation model136,153 for electron percolation in ran-

dom resistor netwroks, over a wide range of porosities.

8. Conclusions

The carrier transport properties in nanocrystalline semicon-

ductors and organic materials are dominated by thermal

activation to a band of extended states (multiple trapping),

or if these do not exist, by hopping via localized states. In

quasiequilibrium conditions, some thermodynamic quantities

determined by the properties of the density of states (DOS) are

crucial for the interpretation of transport properties. One is

the chemical capacitance, Cm, that describes the step occupa-

tion by a small variation of the Fermi level. The other is the

thermodynamic factor, wn, that takes into account the devia-

tion from Maxwell–Boltzmann statistics. It is also found

necessary to distinguish carefully between two different forms

of the diffusion coefficient. The chemical diffusion coefficient,

Dn, is the normal form employed in Fick’s law, and is therefore

the universal coefficient used in the interpretation of measure-

ments. The jump (or kinetic) diffusion coefficient, DJ, relates to

the single particle random walk. Both forms of the diffusion

coefficient are connected as Dn = wnDJ. Consequently there

are two (equivalent) forms of the generalized Einstein relation

for the mobility to the diffusion ratio: one, using Dn, requires

the inclusion of the thermodynamic factor, while the other

one, using DJ, does not, implying that the carrier mobility is

proportional to the jump diffusion coefficient. This observa-

tion has consequences both for interpretation of measure-

ments and for calculation with advanced transport models.

A common feature in the range of models reviewed, is that

most properties of the chemical diffusion coefficient Dn can be

deduced from the chemical capacitance of the separate states

involved in electron transport. This approach allows us to find

a very simple interpretation of Dn in complex models such as

the hopping in a Gaussian DOS. In a multiple trapping scheme

both transport coefficients Dn and un decrease (at a fixed Fermi

level) by the introduction of more traps in the systems, while

the conductivity sn does not decrease by the effect of traps,

provided that trapping–detrapping kinetics is fast.

Appendix: Derivation of the Einstein relation

We consider the motion of electrons in an organic or inorganic

semiconductor material, with concentration n(x) and electric

field F(x) = �@f/@x at position x. The electrical current is

given by the sum of conduction and diffusion currents

jn ¼ qnunF þ qDn
@n

@x
ðA1Þ

The electrochemical potential of electrons is EF = �qf + mn.
At equilibrium we have @EF/@x = 0 and consequently

q
@f
@x
¼ @mn
@x

ðA2Þ

Therefore eqn (A1) gives

jn ¼ n �un þ qDn
1

n

@n

@mn

� �
@mn
@x

ðA3Þ

and using eqn (12)

jn ¼ n �un þ
qDn

kBTwn

� �
@mn
@x

ðA4Þ

Since the current at equilibrium is jn = 0, the expression in

parentheses in eqn (A4) is zero. This imposes a relationship,

eqn (16), between the mobility and the chemical diffusion

coefficient. Eqn (A1) can then be written in terms of the

thermodynamic driving force

jn ¼ �nun
@EF

@x
ðA5Þ

for the diffusion-drift displacement in quasi-equilibrium.

This derivation is clearly explained in the paper by Lands-

berg,56 and in terms of the chemical diffusion coefficient in ref.

32. In the work of Gomer,48 it is stated that eqn (14) involves

the chemical diffusion coefficient, contrary to our statement in

eqn (18). This is because Gomer makes use of the Boltzmann

statistics in his derivation, which reduces the validity to the
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cases in which wn = 1, and then eqns (16) and (18) are

identical.

A decade ago, the occurrence of deviations from the stan-

dard Einstein relation in disordered systems with hopping

carrier transport,58,62 caused some concern for the correctness

of the results of hopping theories, which universally use eqn

(14) for the calculation of mobilities.63,99 However this conflict

is removed by the observation that hopping theories use eqn

(18) and are compatible with experimental deviations from eqn

(14). This is because the jump diffusion coefficient is not

measured in diffusion experiments, that are usually described

by Fick’s law, and consequently by the chemical diffusion

coefficient. Therefore, experimental quantities are related via

the generalized Einstein relationship eqn (16).

Another approach to the Einstein relation in systems with

trap-controlled transport is presented in a recent paper.70 The

authors define the transport coefficient and the Einstein rela-

tion, in terms of the free carriers only. Therefore, the thermo-

dynamic factor is 1 and the classical Einstein relation, eqn (14),

is satisfied in different types of distributions of localized states.

This is a trivial statement and we conclude that this ap-

proach70 is not a proper analysis of multiple trapping trans-

port. In experiments, carrier density and transport coefficients

are strongly influenced by traps, that often have the dominant

contribution on measured quantities. This is evident in many

papers quoted in the present work. Furthermore, it is often not

possible to separately determine the free electrons diffusion

coefficient. This is the case in nanocrystalline TiO2 as shown

here in Fig. 4; note that the band transport indicated in the

model of Fig. 3 is not reached.103 Therefore in the main text we

have used the definitions that are connected to experimentally

measured quantities, as others have done.66–68
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13 H. Böttger and V. V. Bryksin, Hopping Conduction in Solids,

Akademie Verlag, Berlin, 1985.
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J. Bisquert, T. Bosshoa and H. Imaic, J. Phys. Chem. B, 2006,
110, 19406.

104 Y. Fukai, Y. Kondo, S. Mori and E. Suzuki, Electrochem.
Commun., 2007, 9, 1439.

105 I. Abayev, A. Zaban, F. Fabregat-Santiago and J. Bisquert, Phys.
Status Sol., A, 2003, 196, R4.

106 S. D. Baranovskii, P. Thomas and G. J. Adriaenssens, J. Non-
Cryst. Solids, 1995, 190, 283.
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123 J. Garcı́a-Cañadas, F. Fabregat-Santiago, H. Bolink, E. Palo-

mares, G. Garcia-Belmonte and J. Bisquert, Synth. Meth., 2006,
156, 944.

124 V. I. Arkhipov, P. Heremans, E. V. Emelianova and G. J.
Adriaenssens, Appl. Phys. Lett., 2001, 79, 4154.

125 T. H. Nguyen, M. Schmeits and H. P. Loebl, Phys. Rev. B, 2007,
75, 075307.

126 R. Coehoorn, Phys. Rev. B, 2007, 75, 155203.
127 C. Tanase, P. W. M. Blom and D. M. de Leeuw, Phys. Rev. B,

2004, 70, 193202.
128 W. F. Pasveer, J. Cottar, C. Tanase, R. Coehoorn, P. A. Bobbert,

P. W. M. Blom, D. M. de Leeuw and C. J. Michels, Phys. Rev.
Lett., 2005, 94, 206601.

129 J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding and X.
Y. Hou, Phys. Rev. B, 2007, 75, 153201.

130 V. I. Arkhipov, E. V. Emelianova, P. Heremans and H. Bässler,
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