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ABSTRACT 

The potential impacts of herbicide uti lisation compel producers to use new methods 
of weed control. The problem of how to reduce the amount of herbicide and yet 

maintain crop production has stimulated many researchers to study selective 
herbicide application. The key of selective herbicide application is how to 
discriminate the weed areas efficiently. We introduce a procedure for weed 

detection in orange groves which consists of two different stages. In the first stage, 
the main features in an image of the grove are determined (Trees, Trunks, Soil and 

Sky). In the second, the weeds are detected only in those areas which were 
determined as Soil in the first stage. Due to the characteristics of weed detection 
(changing weather and light conditions), we introduce a new training procedure 

with noisy patterns for ensembles of neural networks. In the experiments, a 
comparison of the new noisy learning was successfully performed with a set of well 

known classification problems from the machine learning respository published by 
the University of California, Irvine. This first comparison was performed to 
determine the general behavior and performance of the noisy ensembles. Then, 

the new noisy ensembles were applied to images from orange groves to determine 
where weeds are located using the proposed two-stage procedure. Main results of 

this contribution show that the proposed system is suitable for weed detection in 
orange, and similar, groves. 
 

Keywords: Agricultural Robotics, Agricultural Sensing, Terrain Classification 

1 Introduction 

According to armers we interviewed, weed control is an expensive and 

time-consuming activity in agriculture. Moreover, long-term use of herbicides could 
damage people, animals and the environment. Unfortunately, agricultural 

herbicides and fertilisers have been uniformly sprayed in fields and overused in 
conventional practice. This has caused severe environmental pollution of high 
levels of Phosphate, Potassium or Nitrogen in groves and aquifers (Stayte & 

Vaughan, 2000). Therefore, efforts are being encouraged in designing 
weed-detecting technologies for precision spraying with selective herbicides in 

order to save herbicides and reduce environmental pollution without sacrificing 
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crop yields (Moshou, Vrindts, Ketelaere, Baerdemaeker, & Ramon, 2001; Burks, 
Shearer, Heath, & Donohue, 2005; Cho, Lee, & Jeong, 2002; Bossu, Gee, & 
Truchetet, 2008). Our intention is to create a weed detection system and integrate it 

into an autonomous robotic system such as the ATRV-2 we described in Nebot, 
Torres-Sospedra, and Martínez (2011). 

The automatic detection of weed areas in orange groves has not been widely 
studied. However, there is a vast literature on weed/crop discrimination. In orange 
groves, there can be color similarities among weed areas and orange tree leaves 

so a direct detection based only on color can not be performed. Moreover, some 
important aspects such as weather or light conditions should be considered. For 

this reason, a two-stage system is introduced in this paper to detect weeds in 
groves where a robotic system can navigate through. This research is focused on 
orange groves due to its importance on the economy of western Spain. In the first 

stage, the main areas of a capture (e.g, soil) are determined. Later, in the second 
stage, weeds are detected on soil areas. 

To perform the classification tasks we use ensembles of Multilayer Feedforward 
Networks (also known as MF net, Multilayer Perceptron or MLP network). The 
performance of MLP networks can be improved by using a committee formed by 

several networks (see Tumer & Ghosh, 1996; Dietterich, 2000; Bishop, 2006)]. 
Using artificial neural networks to detect weeds is not new. Sung, Kwak, and Lyou 

(2010) and Moshou et al. (2001) found that this network provided good 
classification rates for terrain classification and weed detection in different contexts. 
Moshou et al. (2001) used a MLP network for classification of reflectance spectra 

from crop and weeds using a spectrophotometer. Burks et al. (2005) used an 
Artificial Neural Network (ANN) to distinguish among six species of weeds and 
detect their presence in raw images which covered approximately a ground area of 

0.23 x 0.3 m. Cho, Lee, and Jeong (2002) also used an ANN for weed-plant 
discrimination using images captured in zenital/overhead view. Cruz-Ramirez, 

Hervás-Martínez, Jurado-Expósito, and López-Granados (2012) also introduced an 
ANN-based model cover crop identification. 

Other methods have also been used to perform weed detection. In Bossu, Gee, 

and Truchetet (2008) machine vision techniques were applied to discriminate 
between crops and weed using the captures of a monochrome CCD camera. 

Specifically, they applied image processing based on spatial information using a 
Gabor filter. Asif, Amir, Israr, and Faraz (2010) introduced a vision system for 
autonomous weed detection robot. This system enabled the navigation of the 

robotic system between the inter-row spaces of crop for automatic weed control but 
a direct weed detection was not introduced. Similar research was introduced in 

Tellaeche, Burgos-Artizzu, Pajares, and Ribeiro (2007) and Tellaeche, Pajares, 
Burgos-Artizzu, and Ribeiro (2011) where the weed detection consisted of two 
sub-processes: image segmentation and decision making with Support Vector 

Machines and Bayesian/Fuzzy k-Means Paradigms. 

The main difference of the proposed system with respect to previous systems is 

that it relies on two ensembles of MLP networks, the first one for terrain-based 
classification and the second one for detecting weeds on soil. The weed detector is 
able to detect weeds on soil instead of discriminate crop and weeds. In this way, 

other elements such as leaves, fallen fruits and trash are automatically rejected. 
This system can be implemented into an autonomous computer-assisted robotic 

system, such as the ATRV-2. Finally, a new training algorithm with noise is applied 
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to the two stage system, due to promising preliminar tests we have previously 
obtained in other classification contexts.      

 

2 Material and Methods 

The here proposed classification system for weed detection is divided into two 

stages. In the first one, the main elements of the image (orange grove) are 
determined. In the second one, weed detection is done on those parts of the image 
which correspondes to Soil according to the first classification (terrain 

classification) because weeds are located on soil. Both tasks are perfomed by 
means of an advanced classifier based on noisy ensembles of neural networks. A 

visual representation of the whole system is shown in Fig. 1.  

This weed detector was designed to be integrated into an autonomous robotic 
system, specifically an ATRV-2 vehicle, whose vision system consists of a VGA 

camera (640x480 pixels). A manual calibration procedure, repeated in each grove, 
with visual marks was done. With this calibration, the distance (depth and lateral 

displacement) with respect the robotic system was approximated. This 
approximation was accurate enough for close and medium-distance weed areas, 
even for a grove with semi-irregular ground (see Table 2). 

In each stage, the corresponding features were extracted from the captured images 
and they were then processed by a classification system based on ensembles of 

neural networks generated with the Noisy Learning procedure. 

This section is introduced as follows. First, the concepts related to the base 
classifier systems (neural networks) and ensembles are introduced. Second the 

new noisy learning is fully described. Then the general experiments for comparison 
purposes are detailed. Finally, the proposed two stage system and the classifiers 
used in the two stages are fully described. 

 

2.1 General Ensemble-Based Classification  

2.1.1 Neural Networks theorerical background 

The MLP network is the architecture used in the experiments carried out in this 
paper with ensembles. This is a feed-forward neural network with an architecture 

that closely resembles the -Perceptron proposed by Rosenblatt in 1961 and the 

layered machine proposed by Nielson in 1965 as described in Pao (1989). 

This network architecture was selected because it is widely known (see Ripley, 
1996; Bishop, 2006) and has also been used for weed detection (Moshou et al., 

2001; Cho et al., 2002; Burks et al., 2005). Moreover, the comparative studies 
carried out in Torres-Sospedra (2011) showed that this network could be used for 
weed classification and the computational costs were reasonable. 

In this study, the original datasets were divided into three different subsets to 
perform the training and evaluation tasks. The first set was the training set (T) 

which was used to adapt the weights of the networks using the Backpropagation 
(Backward Propagation) algorithm (Rumelhart & McClelland, 1986; Rumelhart, 
Hinton, & Williams, 1988). The second set was va lidation set (V) which was used to 

select the final network configuration. This validation set was used to avoid 
overfitting during training. Then, the test set (TS) was used to obtain the accuracy 
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of the network. Finally, the learning set (L) is the union of of T and V. 

 

2.1.2 Ensemble methods 

An ensemble of neural networks is a collection of finite different networks that solve 
the same classification problem. According to the literature (Tumer & Ghosh, 1996; 

Bishop, 2006), the ensemble approach is quite interesting because diversity is 
increased, and therefore the error in classification decreases, as new independent 
neural networks are added to the ensemble. 

The networks of an ensemble are most useful when they make independent errors 
(Tumer & Ghosh, 1996; Dietterich, 2000). Although there are several ways to 

generate ensembles, one of the most important is based on using different learning 
sets according to previous experiments (Torres-Sospedra, 2011). Diversity is 
provided by the fact that the training and validation sets are different for each 

network of the ensemble.  

There are many ensemble models that are suitable for classification. For this 

reason, we selected the following four models for a first evaluation of the noisy 
learning: Simple Ensemble, Bagging, CVCv3WCB and CVCv3Conserboost. 
Simple Ensemble was included because it is the easiest way to generate an 

ensemble. CVCv3Conserboost and CVCv3WCB are both ensembles based on 
Cross-Validation Boosting, but they are distinct from each other and both provide 

good classification results in general cases according to Torres-Sospedra (2011). 
Bagging was selected because it is a well-known model and there is a variant in the 
literature in which noise was introduced (Raviv & Intratorr, 1996). 

The Output Average was selected to fuse the information of the networks. This is a 
simple but effective combiner according to previous experiments (see 
Torres-Sospedra, 2011). Moreover, the Boosting Combiner (see Kuncheva & 

Whitaker, 2002) was used for CVCv3WCB and CVCv3Conserboost. 

 

2.2 Adding special noise to the input values 

Terrain based classification and Weed detection are open classification problems, 
e.g. brightness of weed areas can be differ depending on the grove or, even in the 

same grove, brightness can vary depending on weather. Considering all the 
possible scenarios for both problems is nearly impossible, therefore a learning 

procedure should be used. In particular, we propose a new noisy learning for MLP 
networks and ensembles in which the patterns used to train the neural network are 
modified by adding a special noise in each epoch. For Terrain-based classification 

and Weed detection, the machine learning synonims pattern and sample 
correspond to the information from the capture which is being processed by the  

classifier system (detailed in Section 2.4).  

On the one hand, this learning uses different training samples, so more scenarios 
for classification are considered, that is, slightly different weeds areas are 

considered. On the other hand, diversity of the ensemble system is increased due 
to the use of slightly different samples and training sequences.  

However, we do not intend to inject disproportional or arbitrary noise, such as 
Bagging with Noise (Raviv & Intratorr, 1996) and Observational Learning Algorithm 
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(Jang & Cho, 1999), because the injection of arbitrary noise could even decrease 
the classification performance (Torres-Sospedra, 2011). So, we introduce a noisy 
learning procedure along with a procedure to restrict the values of the injected 

noise vector. In our algorithm, the maximum distance allowed for a new noisy 
pattern is proportional to the Euclidean distance from the original pattern to the new 

noisy pattern. This proportion factor is obtained by using a case-based parameter, 
, which should be empirically determined for each classification task. For the 

weed detection problem, this value is also valid for other groves with similar weed 
species and distribution. 

First the description of this new learning procedure is introduced in Algorithm 1. 

Then, we detail the initialisation phase and the procedure to add noise. 

2.2.1 Learning procedure with noise 

The new learning procedure is similar to the original Backpropagation, with the 
differences indicated in Algorithm 1. The target equation which is minimized and 
the equations used to adapt the networks are the same. However, the original 

Backpropagation was modified to include noise. These modifications were done at 
the beginning of the procedure and in each iteration of the training algorithm. 

The process to generate the random noise was divided in two steps. In the first 
step, some required variables used to generate the random noise were initialized. 
In the second step, performed in each iteration of the learning procedure, random 

noise was added to each training sample (pattern from T). 

 

Algorithm 1.  Noisy MF Network  Training { T , V }  

Set initial weights randomly 

 Calculate distance to closest neighbor vector: 𝒅 ∀𝒙 ∈ 𝑻 

 Set maximum distance to noisy pattern: 𝒎𝒅 ∀𝒙 ∈ 𝑻 

Initialize index vector: : 𝒊𝒏𝒅𝒆𝒙 = {𝟏, … , 𝑵𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 }  

for 𝒆 = 𝟏 to 𝑵𝒆𝒑𝒐𝒄𝒉𝒔 do 

 Randomly reorder the index vector: create index 

for 𝒊 = 𝟏 to 𝑵𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 do 

Select sample 𝒙𝒊𝒏𝒅𝒆𝒙(𝒊) from 𝑻 

 Generate vector 𝒓𝒂𝒏𝒅𝒐𝒎𝒏𝒐𝒊𝒔𝒆  

 Randomly generate a n-dimensional vector: randomvector 

 Normalize vector: randomdirection  

 Set vector’s final length: randomnoise  

 Set noisy pattern: 𝒏𝒙𝒊 =  𝒙𝒊𝒏𝒅𝒆𝒙(𝒊) + 𝒓𝒂𝒏𝒅𝒐𝒎𝒏𝒐𝒊𝒔𝒆 

 Adjust the trainable parameters with 𝒏𝒙𝒊 

end for 

Calculate 𝑴𝑺𝑬 over validation set 𝑽 

Save epoch weights and calculated 𝑴𝑺𝑬 

end for 

Select epoch with lowest MSE on validation set and assign its weights to the final network   

Save network  configuration 

Symbol  represent the new lines introduced to the original Backpropagation algorithm.  
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Note that the training algorithm is an iterative procedure in which an iteration 
corresponds to an epoch. In each epoch, all the patterns from the training set were 
iteratively used to adapt the network in a random order. Before adapting the 

weights, the random noise vector was generated and injected to the original 
pattern. Once the network was updated with all the noisy patterns from the training 

set, the network error (as Mean Squared Error) in the epoch was tested on the 
independent validation set. Finally, the network configuration (weights) 
corresponded to the configuration of the epoch with lowest validation error. 

 

2.2.2 Initialisation phase 

In the new training algorithm, some initial steps were carried out as follows:   

    • Set initial weight values.  

    • Calculate distances to nearest neighbor.  

    • Set maximum distance to noisy pattern.  

Firstly, the initial weight values of the neural network were randomly set. These 

weights were different for each network in order to increase diversity. If all the 
networks share the same initial configuration then the probability of arriving to the 
same final configuration will be higher. 

Secondly, the Euclidean distance to the closest neighbor was calculated for each 
sample or pattern of the training set T. With this procedure, a new vector, d, is 

generated with the corresponding distances. As an example, di refers to the 
Euclidean distance between pattern xi and its nearest neighbor. A graphical 
example is shown in Fig. 2. 

In Fig. 2, it has been supposed the small training set with four two-dimensional 
patterns of a simple classification problem where the number of inputs is two 
(represented by the horizontal and vertical positions of the pattern in the graphics). 

Although it is not realistic, it shows how noise is injected. In the left part these 
patterns are represented with different shapes: Circle, Triangle, Star and Square. 

We can see that the Circle is not close to the other ones and the other three are 
quite close to each other. In the right illustration, we denote with an arrow the 
distance to the closest neighbor for each individual pattern, di. In the example, d1 

corresponds to the Circle, d2 corresponds to the Triangle, d3 corresponds to the 
Star and, finally, d4 corresponds to the Square. 

Then, the maximum distance to a noisy pattern was calculated for each pattern x1, 
defined as the largest distance between the pattern and the new noisy pattern 
based on it. This distance, mdi in Eq. (1), depends on the distance vector di 

(calculated in the previous step) and the case dependent parameter . 

𝑚𝑑𝑖 = 𝛼 · 𝑑𝑖 , 𝛼 ≥ 0 (1) 

Fig. 3 shows three graphical examples of the area in the input feature space in 

which the noisy patterns can be located. As previously mentioned, the input feature 
space of the image is two-dimensional but it is greater for terrain classification and 
weed detection. These areas are shown as a light circle centered in each pattern. 

For instance, any noisy pattern based on the first pattern (Black Circle) will be 
located in the gray area. Each example represents a different value of : A value 

close to 0, a value close to 1 and a value higher than 1. In the experiments, the 
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value of  has been empirically set with the constraint that its values should be in 

range [0.1,…,0.9] to avoid null noise (=0), insignificant noise (≈0) and the 

inherited problems of high noise (>1).  

 

2.2.3 Adding noise phase 

Noisy training, as Backpropagation, is an iterative procedure which is repeated for 

a prefixed number of epochs where the following steps are performed: 

    • Reordering patterns.  

    • Generate noise vectors.  

    • Adapt the networks with noisy samples.  

Firstly, the sequence of patterns was randomly reordered. The performance of the 

ensemble is expected to be improved when this dynamic reordering is used 
because the gradient descend minimisation is not overfitted with the same 
sequence of patterns (Torres-Sospedra, 2011). The index(i) was introduced to link 

the reordered and original training sets, e.g. index(1) corresponds to value 2 in Fig. 
5 (right) because the first pattern of the reordered training set (the Triangle) was 

originally the second pattern. 

The reordered training set was used to adapt the trainable parameters. For each 
pattern from the reordered training set (denoted with index i), a normalized random 

vector was generated to represent the direction and sense of the noise to be 
injected. This new vector was denoted with randomdirectioni and is introduced in 

Eq. (2): 

𝑟𝑎𝑛𝑑𝑜𝑚𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 =
𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑒𝑐𝑡𝑜𝑟𝑖

𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑒𝑐𝑡𝑜𝑟𝑖 )
 (2) 

where randomvectori is a vector that contains n random values and each value is 
unformly distributed in [-1,…,1]. The number of elements, n, corresponds to the 

number of features (input values) of the problem. In the example shown in the 
figures, each pattern is represented with only two features and n is equal to 2. The 
randomvector was divided by its modulus in order to obtain a unitary vector; 

however, the randomdirection vector does not accomplish the requirements related 
to the maximum distance (its modulus is 1). For this reason, the final length of the 

noise vector, randomnoisei, was set according to Eq.(3): 

𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑜𝑖𝑠𝑒𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒 · 𝑚𝑑𝑖𝑛𝑑𝑒𝑥 (𝑖) · 𝑛𝑜𝑖𝑠𝑒𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 (3) 

To set the vector’s length, noisedirectioni was multiplied by the maximum distance 

allowed for the pattern (mdindex(i)) and a random factor uniformly distributed in 
[0,…,1]. With this procedure, the modulus of the final noise vector is equal to or less 

than the maximum distance allowed. Note that the maximum distance for the i-th 
pattern does not correspond to mdi because the training set was reordered, so 
mdindex(i) must be used instead. Moreover, the random value provides the relative 

length of the vector with respect to the maximum distance. 

Finally, the noisy pattern was generated according to Eq. (4). and was used to 

adapt the trainable parameters (weights of the networks) as in Backpropagation. 
The target and the equations used to adapt the weights were not modified. 

𝑛𝑥𝑖 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑜𝑖𝑠𝑒𝑖 (4) 
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A graphical description of how a noisy pattern is generated can be found in Fig. 4. 
This figure introduces how randomvector, randomdirection and randomnoise are 
generated using a simple 2D example. Finally, the figure also illustrates how the 

noise is injected over the pattern.    

Fig. 5 shows the original training set along with the areas in which the noisy 

patterns can be located. In addition, three examples of specific training set in three 
different epochs are shown. Note that the order in which the noisy patterns are 
picked from the training set differs in the three examples.  
 

 

2.3 Evaluation of the new ensemble model 

The ensembles were evaluated on an heterogeneous set of classification problems 
to test the viability of the proposed Noisy Learning. In particular, ensembles of 3, 9, 
20 and 40 networks were built according to the four selected ensembles using the 

two training algorithms (Backpropagation and noisy learning). Nineteen 
classification problems of the University of California at Irvine (UCI) repository 

(Asuncion & Newman, 2007) with optimal training parameters were used to test the 
ensembe models (Table 1). To apply the noisy learning to these ensembles, the 
networks were trained using the learning procedure described in Algorithm 1 

instead of the original Backpropagation.  

The training parameters were set after performing a trial-and-error procedure with 

cross-validation. First, we tested the accuracy of the MLP network with different 
hidden values (ranging from 2 to 40) and standard step/momentum values (0.1 and 
0.01). Then, we have selected the number of hidden nodes which provided the best 

performance on the validation set (V). Finally, we carried out a fine grid search to 
find the best step and momentum values. 

We did not fix the number of inputs and outputs because they correspond, 
respectively, to the features and classes of the original classification problem. The 
number of patterns corresponds to the total number of patterns of the database 

used in the experiments. The databases were divided into three sets as mentioned 
in Section 2.1.1. The training set, T, contained 64% of samples from the original 

dataset, whereas the validation and test sets contained 16% and 20% of the 
patterns, respectively. 

A similar procedure was used to set the parameter of the noisy learning, , for each 

dataset. In particular, a fine grid search was carried out in range [0.1,…,0.9] and 
the values which report the lowest error in the V were used. 

The success of the proposed methodology was evaluated by comparing the 
general performance of the ensembles with the traditional learning procedure and 

noisy alternative. The mean Percentage of Error Reduction across all datasets  
(mean PER) was used to calculate how the error has been reduced with respect to 
a base classifier (the single MLP network in this case) and was used to compare 

ensembles. Individual PER values, Eq.(5), ranges from 0%, where the ensemble 
and the single network provide the same classification rate (percentage of correctly 

classified patterns), to 100%, where the ensemble provides a classification rate of 
100% and the error has been totally reduced. It can also yield negative values, 
which mean that the ensemble provides a lower classification rate than the single 

network. 
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𝑃𝐸𝑅 = 100 ·
𝑃𝑒𝑟𝑓𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 −𝑃𝑒𝑟𝑓𝑠𝑖𝑛𝑔𝑙𝑒𝑛𝑒𝑡

100 −𝑃𝑒𝑟𝑓𝑠𝑖𝑛𝑔𝑙𝑒𝑛𝑒𝑡
 (5) 

where Perf is the classification rate (percentage of correctly classified patterns) for 
the ensemble and the single network. 

The Two-tailed Student's T-Test for Paired Samples was used to provide a 

statistical comparison of the learning algorithms. The performance of two methods 
were considered to be statistically significant if 5%. 

In order to obtain the mean performance and the error calculated by standard error 
theory, the experiments were repeated ten times using different random 

initialisation and different random partitions in T, V and TS in the databases.  

2.4 Application of noisy learning for weed detection 

2.4.1 Imagery used for experimentation 

A total of 140 images were used for experimentation, taken at seven different 
groves in two rounds. Table 2 introduces the feaures of the groves and when the 

captures were taken. The groves were in a good state and the threes had been 
planted more than 6 years before. The percentage of soil covered by weeds was 
between 12% and 19% in the majority of the captures.  

The images were divided into two different tests: the training images and the testing 
images. The former were used to train the ensembles and the later to obtain the 

experimental results. Ten training images were manually selected by the experts 
from the last four groves. With this procedure the training images covered different 
conditions that can be found in the groves (orientation, weather and lighting). The 

experts manually labelled all the images for their classification. 

 

2.4.2 Terrain classification 

A neural network, and any classifier, requires a set of inputs which are processed in 
order to obtain a final prediction (class label). Selecting the most appropriate inputs 

is an important step because a neural network can provide better performance if 
they define well the classification problem. The features introduced in Sung et al. 

(2010) for general terrain classification were used as inputs of the neural networks 
for terrain classification in orange groves. 

The procedure used to perform the terrain classification used in this paper is fully 

described in Torres-Sospedra and Nebot (2011) and it is briefly described in this 
section. Firstly, the two-level Daubechies wavelet transform - 'Daub2' was applied 

to each HSI channel from the image provided by the vision system. With this 
procedure, seven sub-band images were obtained for each channel. Then two 
features, Mean and Energy were calculated with the pixels of the sub-band images 

which correspond to NxM non-overlapping areas of the captured image. Although 
this procedure provides 42 inputs features (Each image contained 3 channels. For 

each channel 7 sub-band images were generated with wavelets and finally two 
values were calculated for each subchannel ) only 24 of them were used due to the 
unuseful data introduced by the discarded inputs according to Sung et al. (2010) 

and prior tests. So, these 24 features were used to perform the terrain-based 
classification along with the two spatial coordinates (x and y). 

Initially, non overlapping 8x8 pixels areas were selected to classify the images. 
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However, partial overlapping was allowed to increase the resolution of the 
classification image. Although the smallest possible area is 4x4 pixels because of 
Wavelets features, the classifications were not so good according to prior 

experiments. Greater sizes were also not suggested due to the low resolution of the 
resulting classification images. Therefore the resolution of the truth image was 

lower (159x119 pixels) than the original capture (640x480 pixels). 

In this way, a sample or pattern (corresponding to a 8x8 pixel area of the captured 
image) was represented by a 26-dimensional vector which was processed by each 

network of the ensemble to provide its classification. Then, the information provided 
by all the networks was fused to obtain the output vector or final class label. Then, 

the input features used for classification were:  

 0.1·M(WVLH,0) 0.1·M(WVLS,0) 0.1·M(WVLL,0) 

 M(WVLH,4) M(WVLS,4) M(WVLL,4) 

 M(WVLH,5) M(WVLS,5) M(WVLL,5) 

 factorH·E(WVLH,0) factorS·E(WVLS,0) factorL·E(WVLL,0) 

 factorH·E(WVLH,1) factorS·E(WVLS,1) factorL·E(WVLL,1) 

 factorH·E(WVLH,2) factorS·E(WVLS,2) factorL·E(WVLL,2) 

 factorH·E(WVLH,4) factorS·E(WVLS,4) factorL·E(WVLL,4) 

 factorH·E(WVLH,5) factorS·E(WVLS,5) factorL·E(WVLL,5) 

 
x

width
  

y

height
 

where WVLc,n stands for the sub-image number n obtained after applying the 
wavelet transform to the channel labelled c (H, S or I) of the original capture. The 

Mean (M) and Energy (E) were calculated with the pixels of the sub-images that 
correspond to the area which is being classified. Width and height corresponds to 

the size of the original image, whereas x and y correspond to the location of the 
central pixel of the area which is being classified. The factor values,  factor in the 
equation, are used to linearly rescale the Energy values for the three HSI channels 

used as inputs and their values were calculated using Eq. (6): 

𝑓𝑎𝑐𝑡𝑜𝑟𝑐 = (∑ 𝐸(𝑊𝑉𝐿𝑐,𝑖)𝑖={0,1,2,4,5} )
−1

 (6) 

Note that the normalisation factor introduced in Eq. (6) does not include the values 
of WVLc,3 since the values of the third wavelet were not used in classification. 

Furthermore, all the input parameters are normalized in the range [0…1] (see 
Preprocessing (Bishop, 1995)) to avoid premature saturation and decompensated 

input features.  

2.4.3 Weed detection 

For the weed detection stage, the capture was divided into non-overlaping areas of 

2x2 pixels. Each area was processed by the second ensemble in order to detect 
the presence (or absence) of weeds on the 2x2 pixels area which was being 

classified. With this area size, the weed detection was more precise according to 
prior experiments and the second classification image was higher (320x240 pixels). 
Moreover, it is worth to mention that the input vector for the second ensemble was 

changed and it only contained the RGB values of the four pixels belonging to the 
2x2 pixels area which was being classified. 
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The main idea of this second stage was to perform a second classification on those 
pixels which had been determined as Soil in the first classification. Thus, the 
classification image obtained in the first stage is binarized and opened (the 

application of erosion and dilalation binary filters) to determine which 2x2 pixels 
areas from the capture corresponded to soil and apply weed detection to them.  

As it has been commented, the input vector of the second ensemble was 
composed of only twelve elements because the current task, determining if weeds 
are present or not, was less difficult than that of terrain classification. In particular, 

there are less color similarities between the weed areas and non-weed areas. 
Dried leaves, fruits and other garbage elements are not differentiated and they are 

included in the no-weed category (soil). Moreover, the spatial coordinates are not 
useful because weeds can be located in any position of the soil. So, the input 
features used in this second stage were: 

R(1,1)

255
 

R(1,2)

255
 

R(2,1)

255
 

R(2,2)

255
 

G(1,1)

255
 

G(1,2)

255
 

G(2,1)

255
 

G(2,2)

255
 

B(1,1)

255
 

B(1,2)

255
 

B(2,1)

255
 

B(2,2)

255
 

where R(x,y) refers to the RGB value (in [0,…,255] range) for the Red channel in 
the coordinate (x,y) of the 2x2 pixels area, and G and B correspond to the Green 
channel and Blue channel values.  

 

3 Results 

3.1 Results for the first experiments to evaluate the new ensemble model 

The general results for the first experiments are shown in Table 3 and they 
correspond to the mean PER. For the ensembles CVCv3Conserboost and 

CVC3WCB, -ave and -bst denote the combiner used to fuse the networks (Output 
average and Boosting Combiner).  

Additionally, the trimmed mean PER is also provided as an additional 
measurement to test the possible sensitive to outliers in the mean values. In the 
trimmed mean, the mean is calculated by discarding the database with maximum 

PER and minimum PER. As the results show, the differences between the mean 
PER and the trimmed mean PER are low in a wide majority of cases (a difference 

lower than 1% in more than 75% of total cases). So, we will focus in the results of 
the mean PER in the rest of the paper.  

According to Table 3, the performance of Simple Ensemble with the original 

learning procedure was improved by the new Noisy learning. In general, the 
application of Noisy training has improved the mean PER and the trimmed mean 
PER by approximately 6.5%. Moreover, the table also show the results of Bagging 

(with traditional and noisy learning procedures) and Bagging with noise (Bagnoise). 
The results show that our Noisy training improved the original Bagging ensemble 

but Bagnoise provided lower performance than the traditional Bagging ensemble. 
This is relevant because the procedure to inject noise in Bagnoise is different to the 
noise proposed in this paper. The procedure to add noise in Bagnoise did not work 

well in general (as the mean PER and Trimmed mean PER shows) but the one we 
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introduce did. 

It can also be seen in Table 3 that the performance of the traditional ensemble was 
also improved when the new noisy learning was applied to CVCv3Conserboost 

using the two combiners. However, the difference in PER tended to decrease as 
new networks were included to the network. This difference is 10% for ensembles 

of 3 networks and it is close to 5% for 40 networks for the Output Average. In the 
case of Boosting Combiner, the differences with respect to the same ensemble with 
traditional training are lower according to the mean PER. In general, 

CVCv3Conserboost provides better results with the new Noisy learning and Output 
average. Thirdly, Noisy Learning has highly improved the performance of 

CVCv3CWCB with respect to the traditional learning procedure in all the cases 
(specially when Output average is used to fuse the networks). The highest overall 
mean PER value was provided by CVCv3WCB-ave and 20 networks in the 

ensemble with Noisy Learning. 

Moreover, it is worth to mention that the best results of Simple Ensemble with 

traditional training, where mean PER is 24.6%, are provided by the case of 40 
networks in the ensemble. It is important because better results can be achieved 
with smaller ensembles, as it is reported for Simple Ensemble with Noisy training 

and 3 networks where the mean PER is 28.4%. The computational training cost 
has been reduced by more than a tenth part and the mean PER has been 

increased by almost 4%. This reduction can be useful in real-time applications. 
Moreover, CVCv3Conserboost and CVCv3WCB provided high mean PER values 
(32% & 37%, respecitvely) for low-sized ensembles and Output average.  

Each ensemble generated with the new noisy learning was statistically compared 
to the original version of the ensemble trained with the original Backpropagation. 
Moreover, Bagnoise was compared to Bagging. The results of the statistical tests 

are introduced in Table 4 where: the symbol ☑  means that the proposed 

alternative is better than the traditional training and the results are statistically 

significant, the symbol ☐  means that the differences are not statistically 

significant, and the symbol ☒ means than the noisy alternative is statistically 

worse than the traditional-trained ensemble.  

According to the statistical results shown in Table 4, the differences between the 
traditional ensemble and the noisy version were always statistically significant for 

Simple Ensemble, CVCv3Conserboost with Output Average as combiner and 
CVCv3WCB with any combiner. For CVCv3Conserboost and Boosting Combiner, 

the new noisy learning was better alternative but the differences with respect to the 
traditional training were statistically significative when the ensemble is composed 
by 3 and 9 networks. The results show that our Noisy training has improved the 

original Bagging ensemble but this improvement has been lower than for the other 
ensemble models. Only the noise injected in Bagnoise provided statistically worse 

results than the traditional learning procedure. Finally it is worth to mention that 
there is not any case in which the Noisy learning is worse than the original training 
procedure. 

Finally, we used the MultiTest algorithm introduced in Yi ldiz and Alpaydin (2006) to 
rank the ensemble models. These ranks agreed with the ranks provided by the 

mean PER, so they are not presented here. 

Based on the results of the first experiments, we concluded that the new learning 
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procedure is more suitable than the traditional Backpropagation. For this reason, 
Simple Ensemble, CVCv3WCB and CVCv3Conserboost with Noisy learning were 
initially considered in our system. Moreover, we decided to apply only ensembles of 

20-networks for the first-stage classification (terrain classification) and ensembles 
of 5-networks for the second-stage (weed detection in soil). 

3.2 Results of applying noisy learning for weed detection 

The results of applying the new noisy learning procedure for weed detection are 
shown in this section. To perform the final classification we followed the operations 

of the flow diagram depicted in Fig. 1 using the 130 testing images.  

3.3 Terrain based classification 

First, Table 5 introduces the parameters of the MLP networks and the noisy 
learning for terrain based classification. They were set after performing a 
trial-and-error procedure similar to the one carried out in Section 2.3.  

Note that the number of patterns (8x8 pixels areas) involved in learning was 48000 
which were extracted from 10 different training images (4800 per image) selected 

by two external human experts from a collection of 140 different captures. Those 
48000 patterns were distributed into the training set and validation set maintaining 
the ratios between classes. Moreover, the performance of a single MLP network for 

the terrain-based classification stage is 92.68%, which will be used to calculate the 
PER values of the ensembles. 

Table 6 introduces the results of six alternatives for terrain-based classification. 
The results include the mean percentage areas correctly identified as main 
elements of the grove, as the mean PER with respect to the performance provided 

by the classifier based on a single MLP network trained with the original training 
algorithm. As it has been mentioned, the classifiers were trained with 10 training 
images and the performance shown in the table corresponds to the mean values, 

from the 130 testing images, along with the standard error.  

The results show that the noisy ensembles provided better results than the 

traditional trained ensembles, being the CVCv3Conserboost the classifier which 
provided the best performance and, moreover this ensemble does not require any 
extra case-dependent parameter. Therefore, it has been selected as the final 

ensemble for terrain classification in our system.  

Although the performance provided by the new noisy learning was higher than the 

performance provided by the traditional ensembles, the percentage of error 
reduction indicated that the improvement with respect to the base classifier (single 
traditional network) was superior for the noisy ensembles. In fact, the best 

ensemble, CVCv3Conserboost with noisy learning, achieved a mean PER of 
31.79% which is notably higher than the best mean PER provided by a traditional 

ensemble for terrain-based classification (22.28%). 

3.3.1 Weed detection 

After doing the terrain classification, weed detection was done only on those areas 

previously classified as Soil. The training parameters of the neural networks used 
for weed detection in the second stage are shown in Table 7. 

Here, the number of training patterns (2x2 pixels areas) was 75110, and they were 
extracted from the 10 different training images previously mentioned. To avoid 
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class-balancement, the number of patterns for the two classes are equally 
distributed. The weed density in soil was between 12% and 19% in the groves 
where we carried out the experiments (3750±1000 weed areas per image approx.), 

so the same number of no-weed areas were randomly selected for each training 
image. It is worth to mention that the performance of the weed detector would have 

decreased if class-balancement had not been considered.   

The complexity of weed detection (number of output nodes features) and the main 
training parameters values (number of hiddden nodes) were significantly lower than 

those introduced for terrain classification. Moreover, weed detection required fewer 
networks in the ensemble to perform the classification task. 

Table 8 introduces the results for the ensembles used for the second classification 
(weed detection) as they were introduced for the first classification. The results are 
obtained after using an ensemble of 20 networks generated with 

CVCv3Conserboost and the Noisy learning for terrain classification. This second 
stage is important since it provides the location of weeds in the images.  

In this second classification, the noisy ensembles also performed better than the 
traditional trained ensembles and the improvement with respect to the base 
classifier was also notable. CVCv3Conserboost and CVCv3WCB provided the best 

performance (92.28%). As in terrain-based classification, we selected 
CVCv3Conserboost for the second stage (weed identification) in our proposed 

two-stage system because it provided the highest mean performance, it also had 
the highest mean PER and it did not require any extra case-based parameter to 
generate it. Although the difference between the original ensemble and the noisy 

ensemble seems to be low, it is worth to note that the difference with respect to the 
single MLP network is 4.25% and the error has been reduced by 35.5%.  

Fig. 7 introduces a visual example of the differences in classification provided by 

our two-stage procedure based on traditional ensembles and our procedure based 
on noisy ensembles for the capture introduced in Fig. 1. The classification rates for 

that capture were similar for both alternatives, 92.02% for traditional ensembles 
and 92.88% for noisy ensembles. Although they are similar, their differences can 
be seen on the visual example we have mentioned.  

3.4 Visual Results 

When the the two-stage procedure for weed detection finished, the main statistics 

of each capture were computed and a visual representation was provided. In 
particular the size (height and width) and center in image pixels were computed for 
each weed zone. Then, the bounding box was also established of all the zones to 

get the weed density and a user-friendly representation. On the one hand, the 
quantity of herbicide can be adjusted depending on the weed area’s size and 

density. High weed areas with high density tend to be more resistant to herbicides 
than small weed areas with low density. On the other hand, farmers (and our 
experts) are usually over 50, so they were much more receptive to this 

bounding-box based representation. 

Fig. 6 introduces an example of capture (see Fig. 1) with all the weed zones 

marked on it. In the figure, the zones boxed in red are the closest weed areas the 
ones which should be immediately treated. The green zones, are the most distant 
ones and their center is more distant. Finally, the yellow boxes are related to the 

intermediate weed areas. Initially, only areas which are not far from the robotic 



 15 

system (red and yellow areas) will be treated.  
 

The limit between close and medium distances was manually determined, by 
means of manual calibration, visual indicators and an external human expert. The 

expert measured the distance covered by the robotic system in 5 seconds, 
whereas the limit between and medium and large distances was determined by the 

distance covered in 12 seconds. The position of the centroid determines whether 
an area is assigned to close, medium or large distance. A few special cases, such 
as very high weed areas, are also considered. 

Finally, Fig. 7 introduces some graphical examples of classification to provide a 
visual representation of the results. First, we show the results provided by our 

system using the traditional Backpropagation algorithm (Fig. 7 (a)) and the results 
provided using the noisy learning (Fig. 7 (b)) for the example image introduced in 
Fig. 1. Then, we provide three examples considering different scenarios. Fig. 7 (c) 

introduces an example of the good classification provided by the system with 
backlighting or differences in brightness. Moreover, the capture was taken in a 

grove with curved rows. Fig. 7 (e) and (g) introduce two captures with irregular 
ground which were taken in two different groves at different hours and in two 
different days. Moreover, the robot is not in the centre of the path in Fig. 7 (g). In 

the real environment, the robot navigates centred on the middle of the path row so 
this displacement may not occur. However, this visual result has been included for 

validation purposes.  

According to Fig. 7 (a) and Fig. 7 (b), the traditional ensemble and the noisy 
ensemble are similar but different enough. In particular, the noisy ensemble suited 

better for this example. E.g., some low-sized weed zones were detected on the 
bottom left part of the capture and it did not detect weeds close to sky. 

In general, the structure of the grove and weed areas were properly identified in 
these three different visual examples. The performance (success in classifying) 
and the external subjective validation done by our experts were, both, possitive.  

 

4 Discussion 

4.1 Computational cost 

The initial prototype was developed in Java and it was successfully tested on a 
Intel’s Core2Duo-based computer with 2GB RAM. The total time required for 

processing the whole capture was 247 ms: 173 ms to obtain the Wavelets; 42 ms 
for the first ensemble classification; 5 ms for the second ensemble classification; 

and 27 ms for filtering. Moreover, we developed a second prototype in which 
system was only applied to the closest area of the capture (from bottom to the L1 
threshold shown in Fig. 6) and the execution time was reduced to 52 ms. Although 

the prototipes were not fully optimized, both allow us to apply the two-stage system 
in real-time for detecting weeds. 

4.2 Post-processing and weed-detection 

The performance provided by the weed detector was lower than the obtained in 
terrain classification. Note that the performance corresponds to the percentage of 

patterns (2x2 pixels areas) which were correctly classified as weed or no-weed 
after filtering (see flow diagram in Fig. 1). This post-processing procedure was 

introduced after the second classification to eliminate the small weed areas (those 
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areas lower than 10 pixels in the testing images) because they may not be 
significant or they may be due to a misclassification according to our experts. 
Moreover, post-processing filters, similar to the one introduced in our system, are 

commonly applied in image classification (see Sung et al. (2010) and Montalvo, 
Guerrero, Romeo, Emmi, Guijarro, and Pajares (2013)). 

Finally, our human experts considered that it was better to treat small and very 
small weed areas in a further exploration if the weeds really existed. If chemical 
products have been applied and the detection was a false positive (weeds are not 

present), the use of the products would have been unnecessary. The main objetive 
of our system was to minimize the impact of chemical spraying so it was focused on 

detecting high weed zones in order to avoid spraying on clear zones incorrectly 
classified as weed. Furthermore, the expers also suggested to avoid treating very 
small weed areas because two main reasons: they could die due to the robotic 

systems and humans interaction, and they could be highly affected by spaying 
other weed areas close to them. 

 

4.3 Comparison with other alternatives for weed detection 

The detection method introduced in this paper, differs from others previously 

proposed: This paper introduces a weed detector in orchads instead of solving the 
problem of weed/crop discrimination; Detection is performed by using a normal 

CCD sensor in contrast to other contributions which use hyperspectral cameras 
(Karimi, Prasher, McNairn, Bonnell, Dutilleul, & Goel, 2005) or remote imagery 
Cruz-Ramirez et al. (2012); Frontal view is done instead of zenital view (Cho, Lee, 

& Jeong, 2002) and (Burks et al, 2005); Our system is tested in realistic scenarios 
in which the ground is not clean (presence of leaves, fruits and "garbage" elements 
as shown in Fig. 7); The proposed classifier is based on ensembles instead of the 

single-net classifier commonly used in the literature. 

Here we compare our system with other systems introduced in the literature which 

can be adapted for weed detection in orange groves. We ommited those systems 
based on overhead vision systems because they required navigation through the 
same path row several times to detect weeds effectively (a single capture does not 

cover the entire path width with a precision of 0.01 m pixel-1 with the CCD sensors 
we tested), so this exploration was not contempled.   

 

4.3.1 Remote imagery based detector 

Cruz-Ramirez et al. (2012) introduced a single-step system to detect cover crops in 

olive orchards. Those crops are located between tree rows, so it is similar to the 
weed detection we deal with in orange groves. However, the objectives of our work 

and theirs differ. They used remote imagery and GPS, whereas our basic vision 
system is fully located on the grove. The system proposed by Cruz-Ramirez et al. 
(2012), provides good classification rates and crops between olive trees rows are 

detected in one step. In our system, the image provided by the vision system 
partially covers one row of the grove. Although our system uses cheaper sensors, it 

requires moving across the entire grove to detect weeds. The resolution of imagery 
in Cruz-Ramirez’s system is 0.4 m pixel -1, whereas the resolution in our system 
depends on the distance to the camera. The resolution ranged from less than 0.01 

m/pixel in the near part of the image to 0.085 m pixel-1 approx. in the middle part of 
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the image. Orange fruits (0.075 x 0.06 m approx.) were perfectly captured by our 
vision system (Fig. 7 (a,c)), but they could not have been detected with the imagery 
of Cruz-Ramirez et al.  

 

4.3.2 Expert system based classification 

Other system that could be applied is the crop/weed identifier proposed in Montalvo 
et al. (2013), herein after referred to as Montalvo’s System. The proposed expert 
system contains three sequential stages in which human expert knowledge is 

applied. The aim of their system was to evaluate treatment effectiveness by 
identifying vegetation and plants that have lost greenness.  

The first stage provides a binary map with unmasked plants. The second stage 
provides a map with masked plants. This special vegetation, such as plants that 
have already started their drying process. The third stage is used for mask filtering 

purposes (removing small areas or isolated pixels). Due to differences in vision 
system inclination, we decided to apply this detector only on those pixels of our 

imagery that were previously classified as soil. It was unneceasary to detect 
vegetation (weeds in our case) in the trees or the sky. Moreover, we also decided 
to use only first and third stage of the Montalvo’s System to detect weeds in orange 

groves. We consider that detecting masked plants, such as plants that have 
already started their drying process, is not required in our application, because we 

want to detect alive weeds and apply a treatment.  

Montalvo’s System provided a performance with our test set (composed by 130 
images) of 91.98% which was a similar performance to our system based on noisy 

ensembles of neural networks (92.28%). In general, the most important weed areas 
were properly identified by both systems; however, they did not detect exactly the 
same weeds. Our system correctly detected weed areas which were not detected 

by Montalvo’s system and vice versa. 

For comparison purposes, we introduce Fig. 8. Right image shows a composition of 

the detections provided by our system and Montalvo’s system, where black pixels 
correspond to those pixels, of the original capture, that were determined as weed or 
vegetation by our noisy ensemble and the Montalvo’s system. Green pixels 

correspond to weeds detected only by our system, and red pixels are those weeds 
identified only by Montalvo’s system.  

It could be interesting to combine the results of both systems with the intersection 
or union of the weed detection masks. On one hand, the intersection of two good 
weed identifiers could provide a more sophisticated detection. Spraying could be 

minimised and treatment could be only applied on those zones with high probability 
of containing weeds. On the other hand, the “union” of the two classifiers could also 

be interesting, if the treatment depends on the number of detectors that have 
identified a zone as weeds, e.g, a reduced or different treatment could be applied if 
only one detector identifies a zone as weeds, and the complete treatment may be 

applied when both agree in detecting weeds.  

 

4.4 Future work 

As future work, our intention is to introduce more sensors to the current system. 
One of these new sensors is a second camera with exactly the same features to 
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perform stereo vision. With stereo vision, the position of the weeds with respect to 
the robot can be directly calculated if the pair of cameras are calibrated.  

Moreover, other interesting weed and vegetation detectors, will be considered to 

improve the detection of weeds on soil. According to the experiments done with the 
system provided by Montalvo, their system and our provided similar performance 

but they slightly differ on detecting weeds. Although we consider that integrating 
some different weed detection alternatives can be beneficial to efficiently detect 
weeds, it is important to mention that computational cost may increase since two, 

or more, detectors are applied together. 

 

5 Conclusions 

This paper introduces a new system for weed detection into orange groves based 
on ensembles of neural networks. Due to the features of weed detection, mainly 

changes in weather and light conditions, a noisy learning procedure was proposed. 
This new system provides a final classification image which includes the main 

areas of the capture and indicates the presence of weeds on the soil. 

Firstly, the new noisy learning was succesfully tested with four ensemble models 
and nineteen classification problems from the UCI repository of machine learning. 

This first comparison was carried out in order to determine the performance of the 
proposed learning procedure with well-known and publicly available datasets. The 

results showed that proposed Noisy learning provides better mean PER values 
than the traditional training and other noisy ensembles (bagnoise), the increase is 
around 5% in the majority of cases, and the improvements were statistically 

significant. The best classfier with traditional training provided a mean PER of 
32.4% whereas the best noisy classifier, generated with CVCv3Conserboost, 
provided a 37.9%. 

The new learning procedure was used in the two-stage weed detector. Our system 
was tested with 130 testing images taken from seven orange groves and the results 

showed that CVCv3Conserboost trained with the proposed noisy learning provided 
the best mean performance (mean percentage of correctly classified areas in the 
test set captures) in the first stage, concretely it provided a mean performance of 

95.0%. In the second stage, weed detection was also performed with 
CVCv3Conserboost and the proposed noisy learning since it also provided the best 

mean performance (92.28%).  

According to the results shown, the new noisy learning is an appropriate alternative 
for weed detection tasks. Moreover, it is important to mention that the 

post-processing procedure applied after the second classification (filtering) ensures 
that small weed areas would not be considered for treatment thereby reducing the 

chemical inputs which is one of the main goals of this research. 
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Fig. 1  Flow diagram of the two-stage weed detection. First stage corresponds to 

the identification of the main parts of the grove, whereas the second stage 
processes the original capture to detect weeds on those areas previously identified 

as Soil. An example of capture and result is included in the diagram along with 
some intermediate required images and binary masks.  

Fig. 2  2D-representation of four artificial patterns and distance to the nearest 

neighbor. 

Fig. 3  2D-representation of four artificial patterns and the area in which noise 

patterns can be located using three different values of factor . 

Fig. 4  Description of the procedure used to generate a noisy pattern. Graphical 

meaning of randomvector, randomdirection and randomnoise in a simple 2D 

example (n=2). For simplification purposes, reordering is not shown and md refers 
to mdindex(i). 

Fig. 5  Example of noisy training sets. The left image shows the original training 

set, the initial sequence of patters (Circle is the first element, Triangle is the 

second, Star is the third and Square is the fourth), and the area in which noisy 
patterns can be located (dotted light circle surrounding patterns). The other two 
subfigures show the possible training set at two different epochs of the 

Backpropagation algorithm. The order, given by the numbers, is different in the two 
examples and does not correspond to the original in any of them. 

Fig. 6  Capture with weed zones marked on it and main statistics extracted from 

all the weeds zones: width, height, location, area and weed density. Red boxed 

areas are the closest ones to the robotic system, yellow boxed areas are in a 
intermediate distance, and green boxed areas are distant to the robotic system. 
Borders between close-medium and medium-large areas are marked on the left 

border of the capture with L1 and L2 respectively. 

Fig. 7  Visual results. a) and b) introduces the visual representation of the 

differences between the results provided by traditional Backpropagation and the 
new noisy learning where black pixels corresponds to detected weeds. The other 

colors correponds to the main elements identification. c), e) and g) show the 
captures with the weed zoned marked on it (coloured boxes). d), f) and h) show the 
results of the two-stage system on c), e) and g) images. 

Fig. 8  Comparison of Montalvo’s system and ours using the capture from Fig. 1. 

Left image shows the weed detection provided by Montalvo’s system (only Stages 

1&3) on areas previously identified as Soil by our system. Right image shows a 
composition of combining weed areas detected by both systems weeds detected 

by both systems are shown in black. Green and Red stands for the weeds only 
identified by our system and Montalvo’s system respectively. 



Nomenclature 

 Npatterns Number of patters in training set 

UCI Uvinersity of Irvine, Carlifornia Nepochs Number of epochs in 
Backpropagation 

ATRV-2 All Terrain Robot Vehicle ver.2 e Index of epoch in backpropagation 

ANN Artificial Neural Network i Original index of pattern 

MLP Multilayer Perceptron index(i) Index of pattern after reordering 

MF Multilayer Feedforward xi Pattern (feature vector) 

T Training set di Distance to closest pattern 

V Validation set mdi Maximum distance allowed for noise 

TS Test set α Noise factor 

MSE Mean Squared Error randomnoise Noise injected to pattern 

PER Percentage of Error Reduction nxi Noisy Pattern (feature vector with 
noise) 

M.PER Mean of PER values  WVL Wavelet 

T.PER Trimmed mean of PER values. M Mean of wavelet values 

Perf. 

 

Performance. Classification rate. 
Percentage of Correctly 
Classified samples 

E Energy of wavelet values 

factorc Normalization of Energy values  

 



 

Table 1 – Training parameters and mean performance of a single network on 19 benchmarking 
datasets  

database patt. input hidden output step mom. iteration mean perf. 

aritm 442 277 9 2 0.1 0.05 2500 75.6 ± 0.7 

bala 625 4 20 3 0.1 0.05 5000 87.6 ± 0.6 

band 277 39 23 2 0.1 0.05 5000 72.4 ± 1.0 

bupa 345 6 11 2 0.1 0.05 8500 58.3 ± 0.6 

cred 653 2 15 2 0.1 0.05 8500 85.6 ± 0.5 

derma 358 34 4 6 0.1 0.05 1000 96.7 ± 0.4 

ecoli 336 7 5 8 0.1 0.05 10000 84.4 ± 0.7 

flare 1066 10 11 2 0.6 0.05 10000 82.1 ± 0.3 

glas 214 19 3 6 0.1 0.05 4000 78.5 ± 0.9 

hear 297 13 2 2 0.1 0.05 5000 82.0 ± 0.9 

img 2311 19 14 7 0.4 0.05 1500 96.3 ± 0.2 

ionos 351 34 8 2 0.1 0.05 5000 87.9 ± 0.7 

mok1 432 6 6 2 0.1 0.05 3000 74.3 ± 1.1 

mok2 432 6 20 2 0.1 0.05 7000 65.9 ± 0.5 

pima 768 8 14 2 0.4 0.05 10000 76.7 ± 0.6 

survi 306 3 9 2 0.1 0.2 20000 74.2 ± 0.8 

vote 435 16 1 2 0.1 0.05 2500 95.0 ± 0.4 

vowel 990 11 15 11 0.2 0.2 4000 83.4 ± 0.6 

wdbc 569 30 6 2 0.1 0.05 4000 97.4 ± 0.3 

patt: Total number of patterns in the database 

input: Number of input features 

hidden: Number of hidden nodes in the hidden layer 

output: Number of classes 

step: Adaptation step of Backpropagation 

mom.: Momentum rate of Backpropagation 

iteration: Number of iterations performed in Backpropagation 

mean perf.: Mean percentage of correctly classified patterns from TS after running the experiments 10 times 

 



 

Table 2 – General Information about the seven groves 

   1st Round Captures 2nd Round Captures 

Location Features Orientation Month Hour Weather Month Hour Weather 

Almassora Mostly clean NW-SE June 5 P.M. Cloudy Oct. 10 A.M. Cloudy 

Borriana Leaves in Soil SW-NE July 10 A.M. Sunny Oct. 1 P.M. Cloudy 

La Vall d’Uxò Irregular ground  N-S July 1 P.M. Sunny Nov. 11 A.M. Sunny 

La Vall d’Uxò Fruits in soil NW-SE July 12 P.M. Sunny Dec. 10 A.M. Sun/Cloud 

La Vall d’Uxò 
Dried leaves & Curved 

Row s W-E July 3 P.M. Sunny Nov. 2 P.M. Sunny 

Vila-real Fruits&Leaves in soil SW-NE June 9 A.M. Cloudy Sept. 12 A.M. Cloudy 

Vila-real Mostly Clean SW-NE July 12 P.M. Sun/Cloud Sept. 10 P.M Cloudy 

 

 

Table 3 – Ensemble comparison with public datasets. General Results according to Mean PER 
(M.PER) and trimmed Mean PER (T.PER) for ensembles of 3, 9, 20 and 40 networks trained with the 
traditional learning procedure (Trad.) and the proposed noisy training (Noisy). 

  3 nets 9 nets 20 nets 40 nets 

ensemble learn. M .PER T.PER  M .PER T.PER  M .PER T.PER  M .PER T.PER  

Simple Ensemble Trad. 21.8% 21.3% 23.7% 24.9% 23.7% 23.6% 24.6% 24.6% 

Simple Ensemble Noisy 28.4% 28.4% 30.5% 30.6% 30.4% 30.3% 30.9% 30.9% 

Bagging Trad. 22.9% 23.7% 27.5% 26.7% 28.3% 27.3% 27.7% 28.6% 

Bagging Noisy 25% 24.9% 29% 28.5% 29.4% 29.0% 30.3% 30.1% 

Bagnoise - 13.3% 14.6% 12.4% 13.6% 13.1% 15.6% 13.7% 16.0% 

CVCv3Conserb-ave Trad. 22.4% 22.2% 28.4% 29.3% 30% 30.8% 30.7% 31.3% 

CVCv3Conserb-ave Noisy 32.4% 33.1% 37.1% 37.7% 36.8% 37.6% 35.5% 36.5% 

CVCv3Conserb-bst Trad. 17.2% 16.4% 27.5% 28.4% 30.2% 31.2% 31.3% 33.4% 

CVCv3Conserb-bst Noisy 22.8% 22.8% 30.9% 31.8% 30.6% 33.0% 32.2% 34.1% 

CVCv3WCB-ave Trad. 19.8% 22.1% 28% 28.6% 28.5% 29.6% 32.5% 33.5% 

CVCv3WCB-ave Noisy 32.3% 32.4% 36.3% 37.0% 37.9% 38.9% 36.2% 37.0% 

CVCv3WCB-bst Trad. 15.7% 17.0% 27.3% 27.7% 29.7% 30.1% 30.4% 30.6% 

CVCv3WCB-bst Noisy 29.3% 29.0% 35.1% 35.7% 37% 37.6% 37% 37.8% 

ensemble Ensemble model used to generate the classif ier 

learn. Learning procedure used. “Trad” stands for the traditional Backpropagation w hereas Noisy corresponds to 
the new  noisy learning. Bagnoise is special and uses its ow n noisy learning procedure 

 

Table 4 – Summarize of the statistical results, t-test, for ensembles of 3, 9, 20 and 40 networks. 

ensemble Learning procedures compared 3 nets 9 nets 20 nets 40 nets 

Simple Ensemble Noisy vs. Traditional ☑ ☑ ☑ ☑

Bagging Noisy vs. Traditional ☐  ☐  ☐  ☑

Bagging Bagnoise * vs. Traditional ☒ ☒ ☒ ☒

CVCv3Conserb-ave Noisy vs. Traditional ☑ ☑ ☑ ☑

CVCv3Conserb-bst Noisy vs. Traditional ☑ ☑ ☐  ☐  

CVCv3WCB-ave Noisy vs. Traditional ☑ ☑ ☑ ☑

CVCv3WCB-bst Noisy vs. Traditional ☑ ☑ ☑ ☑

ensemble Ensemble model used to generate the classif iers 

☑ Means that noisy learning is statistically better than Backpropagation for the ensemble model 

☐ Means that noisy learning and Backpropagation have not statistical differences f or the ensemble 

☒ Means that noisy learning is statistically w orse than Backpropagation for the ensemble model 

*Bagnoise is considered a noisy learning in this table 



 

Table 5 - Training parameters of the MLP network 
and ensemble parameters for Terrain classification 

Number of patterns: 48000 (24000 for T and 24000 for V) 

Number of nodes: 26 (input) – 18 (hidden) – 4 (Output) 

Adaptation Step: 0.10 

Momentum rate: 0.05 

Number of epochs: 2000 

Performance: 92.68±0.3 (independent test set) 

α-value (noisy learning): 0.8 

 

 

Table 6 – Results for the First Stage – Terrain Classification 

Mean Performance and Mean PER (M.PER) for ensembles of 20 networks from 130 testing images. 
Results include the standard error of the mean. 

 Traditional Learning  Noisy Learning 

ensemble M ean performance M .PER  M ean Performance M .PER 

Simple Ensemble 93.35±0.15 9.17±2.11  94.05±0.11 18.66±1.46 

CVCv3Conserboost 94.16±0.14 20.24±1.96  95.01±0.08 31.79±1.08 

CVCv3WCB 94.31±0.08 22.28±1.09  94.66±0.05 27.1±0.72 

ensemble Ensemble model used to generate the classif ier 

Mean 
performance 

Mean of the performance (as percentage of 8x8 pixels areas correctly classif ied) for the 130 images 
along w ith the standard error of the mean 

M.PER 
Mean of the Percentage of Error Reduction w ith respect to the traditional single MLP (PER) for the 130 
images along w ith the standard error of the eman 

 

Table 7 - Training parameters of the MLP network 
and ensemble parameters for Weed Detection 

Number of patterns: 75110 (37555 for T and 37555 for V) 

Number of input nodes: 12 (input) – 9 (hidden) – 2 (output)   

Adaptation Step: 0.10 

Momentum rate: 0.05 

Number of epochs: 1200 

Performance: 88.03±0.1 (independent test set) 

α-value (noisy learning): 0.75 

 

 

Table 8 – Results for the Second Stage – Weed Detection after filtering 

Mean Performance and Mean PER (M.PER) for ensembles of 5 networks from 130 testing images. 
Results includes the standard error of the mean. 

 Traditional Learning  Noisy Learning 

ensemble M ean performance M .PER  M ean Performance M .PER 

Simple Ensemble 89.52±0.16 12.46±1.3  89.99±0.11 16.35±0.96 

CVCv3Conserboost 91.65±0.13 30.26±1.09  92.28±0.08 35.52±0.63 

CVCv3WCB 91.73±0.08 30.94±0.63  92.28±0.05 35.49±0.41 

ensemble Ensemble model used to generate the classif ier 

Mean 
performance 

Mean of the performance (as percentage of 2x2 pixels areas correctly classif ied) for the 130 images 
along w ith the standard error of the mean 

M.PER 
Mean of the Percentage of Error Reduction w ith respect to the traditional single MLP (PER) for the 130 
images along w ith the standard error of the eman 

 




































