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Abstract.
The increasing amount of unstructured text published on the Web is demanding

new tools and methods to automatically process and extract relevant information. Tra-
ditional information extraction has focused on harvesting domain-specific, pre-specified
relations, which usually requires manual labor and heavy machinery. Especially in the
biomedical domain the main efforts have been directed towards the recognition of well-
defined entities such as genes or proteins, which constitutes the basis for extracting
the relations between the recognized entities. The intrinsic features and scale of the
Web demand new approaches able to cope with the diversity of documents, where the
number of relations is unbounded and not known in advance. This paper presents a scal-
able method for the extraction of domain-independent relations from text that exploits
the knowledge in the semantic annotations. The method is not geared to any specific
domain (e.g., protein-protein interactions, drug-drug interactions, etc.) and does not
require any manual input or deep processing. Moreover, the method uses the extracted
relations to compute groups of abstract semantic relations characterized by their sig-
nature types and synonymous relation strings. This constitutes a valuable source of
knowledge when constructing formal knowledge bases, as we enable seamless integra-
tion of the extracted relations with the available knowledge resources through the pro-
cess of semantic annotation. The proposed approach has successfully been applied to a
large text collection in the biomedical domain and the results are very encouraging.
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1. Introduction

Building and maintaining knowledge bases from both structured and unstruc-
tured text has been an active research field during the last years. Some ef-
forts include opencyc.org1, dbpedia.org [4], yago [47], stat-snowball [56] and free-
base.com2. Several areas such as question answering, information extraction and
textual entailment can benefit enormously from this factual knowledge.

The biomedical domain has attracted a lot of attention among the informa-
tion extraction (IE) community due to the huge amount of scientific literature
available (e.g., PubMed3). This scenario is very attractive, as most important
knowledge still remains implicit in unstructured text, hindering its use and au-
tomatic exploitation by other applications. Moreover, the availability of already
existing domain resources and databases as well as the standardization efforts
in the biomedical community (e.g., MeSH [34], SNOMED CT [46], UMLS [10])
open interesting opportunities to integrate and augment the already existing
resources with new knowledge automatically extracted from the literature.

Relation extraction (RE), which consists in finding associations between rec-
ognized entities within a text chunk, has recently found increasing interest among
the IE community. The aim is to turn unstructured textual information into a
machine-processable, structured form. This trend is in tune with the principles
of the emergent Linked Data4 philosophy and the Semantic Web [9].

However, the majority of RE approaches applied to the biomedical domain are
aimed at extracting high precision relations about only a small, pre-defined set of
specific relations of interest (e.g., protein-protein relationships, drug-
disease relationships, etc.) [43, 1, 35]. Moreover, they require either hand-crafted
extraction patterns or hand-labeled training data. These requirements make the
existing RE methods difficult to scale and limit the extraction process. The re-
cent open information extraction paradigm, Open IE [5, 6], has been successfully
applied to extract general unrestricted knowledge in a Web environment. It at-
tempts to overcome the previous limitations by providing a method which is
relation independent and does not require labeled training data. However, the
method has other important limitations that would make difficult to successfully
apply it to the biomedical domain. Firstly, the extracted relations are not canon-
ical, in the sense that they do not refer to well-defined entities. We consider a
requirement to extract canonical relations that refer to entities in public knowl-
edge resources (i.e., thesaurus, ontologies, etc.) as an enabling tool to realize the
Semantic Web. Another requirement is imposed by the nature of the extraction
process. Since the aim is to extract non-targeted unspecified relations, the gran-
ularity and semantics of the discovered relations needs to be taken care of so
that synonymous relation strings are grouped under the same abstract relation.
Synonym resolution for relations has been addressed by the NLP community un-
der the broader field of paraphrase discovery, which includes not only synonymy
between lexical items but also other forms such as hyperonymy. Many of the
methods for determining the synonymy between two strings have made use of
the well-known distributional similarity measures [28].

1 http://opencyc.org/
2 http://freebase.com
3 http://www.ncbi.nlm.nih.gov/pubmed/
4 http://linkeddata.org
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Inspired by the same principles claimed in Open IE and the previous require-
ments we propose an unsupervised and scalable method for relation extraction
and relation synonyms identification based on semantic annotation of textual
sources. Given a text collection and a knowledge resource, a semantic annota-
tion tool links the detected entities in the text to the concepts in the knowledge
resource. This way, entities are leveraged with their semantics, which can be
later used to enhance the relation extraction process. In a recall oriented phase,
we apply a set of lexico-syntactic patterns over the annotated text to extract
candidate relations. Then, an efficient clustering algorithm is proposed to group
synonymous relation strings denoting abstract semantic relations. The synonymy
between two relation strings is calculated with a probabilistic model based on the
semantic types of the relation arguments provided by the semantic annotations
of the entities. As a result, we obtain clusters of abstract semantic relations char-
acterized by their signature types (i.e., domain and range semantic types) and
containing the synonymous relation strings that best represent the abstract rela-
tion. Finally, the relation instances (i.e., concrete binary relations) are associated
to the corresponding abstract semantic relation.

We summarize the contributions of the paper as follows:

– We use semantic annotation as the main foundation to identify and charac-
terize binary relations in unstructured text.

– We propose a probabilistic model to measure relation synonymy which is
semantics-aware. The model takes into account the distributions of the se-
mantic types of the relation arguments.

– We propose an efficient clustering method to automatically discover groups of
relation strings denoting abstract semantic relations with absolutely no human
intervention at the Web scale.

– We apply the proposed method to a set of texts from the biomedical domain
and demonstrate its scalability, assess the quality of the discovered clusters of
semantic relations and suggest directions for future work.

The remainder of the paper is organized as follows. In Section 2, we discuss
related research efforts. We present an overview of the method in Section 3.
Sections 4, 5 and 6 elaborate on the different components of the method, the
semantic annotation process, the pattern extraction and the discovery of abstract
semantic relations, respectively. We evaluate the proposed approach in Section
7 and conclude with a discussion in Section 8.

2. Related Work

The approach proposed in this paper is related to work in several fields: in-
formation extraction, and in particular the subtask of relation extraction, and
synonym resolution discovery. In this section we survey methods proposed in
these disciplines both in the general and the biomedical domain.

2.1. Relation extraction

Common approaches for RE in the biomedical domain use pattern and rule-based
[1], co-occurrence-based [24] and machine learning-based [43] methods. These
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methods usually apply different natural language processing (NLP) techniques
ranging from shallow parsing (e.g., POS tagging) to dependency parsing and
deep linguistic parsing [50, 36, 14]. In our setting, we cannot afford to apply
expensive and sophisticated parsing techniques as scalability is one of the main
requirements.

Pattern and rule-based methods [1, 35, 23, 51, 22, 39] usually require human
effort and intervention for updating and customizing patterns and rules to each
application scenario. This issue is alleviated in [25], where the authors propose
an inductive logic programming framework to learn the rules. Bootstrapping
methods were proposed to learn both semantic lexicons and extraction patterns
[42, 17]. The bootstrapping methods [48, 33] have been enhanced with reasoning
capabilities to learn new constraints and rules and achieve both high precision
and high recall.

Supervised machine learning techniques have also been successfully applied
to train relation classifiers on human annotated texts in the biomedical domain
[19, 12, 29]. They view the RE process as a classification problem, where the
task consists in finding out if a particular relation holds between two entities
in a sentence. Examples of supervised methods using kernels to encode lexical
and syntactic features include [19, 29]. Other supervised approaches model the
problem of RE as a sequence labeling problem and apply Markov logic and
conditional random fields to identify the relations between two entities [43, 12].
The need of hand-labeled training examples of these approaches makes it difficult
to scale to heterogeneous and large environments such as the Web. On the other
hand, some of these methods address the identification of relations that are
implicit in the text and cannot be captured by using lexico-syntactic patterns.
This is a different problem from the one treated in this paper and is out of our
scope as it requires different techniques.

The majority of the previous methods address the problem of RE in specific
biomedical sub-domains that are of limited scope and require the set of target
relations beforehand. However, we do not attempt to populate a given target
relation, but rather discover any kind of relation relevant to the collection. Fur-
ther, our approach is able to automatically obtain brand-new relations as they
appear over time. The previous approaches also require some form of human
intervention such as annotated training data or extraction patterns, as opposed
to our method, which is fully unsupervised.

In this paper we focus on open IE, which attempts to extract domain-
independent unknown relations. Although some research work has addressed
the problem of open IE to extract general knowledge, few approaches have con-
sidered performing open IE in the biomedical domain[32]. Preemptive IE [45]
is the precursor of open IE, as they describe an approach to “unrestricted rela-
tion discovery”. Given a collection of news documents, they first cluster them
based on pairwise vector-space clustering. Within each cluster they apply heavy
linguistic machinery and additional clustering to group entities based on docu-
ments clusters. The computational cost of the approach makes it difficult to scale
to a web environment. The most salient research in this context is TextRunner
[53, 5, 6], which introduced the open IE paradigm. Although TextRunner is able
to extract unknown relations at the Web scale, it does not harvest knowledge
facts, but rather triples where both the relation and the arguments are simply
non-canonical strings without any semantics attached to them. This makes the
re-use of the extracted triples by other applications rather difficult and hinders
the population of existing knowledge resources, which is one of the main objec-
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tives to realize the Semantic Web. Other recent approaches that focus on open
IE [56, 11] also suffer from the same issue. The work in [11] is related to ours
since they propose a two-step procedure for relation extraction using clustering
techniques. They first generate entity pairs and shallow lexical-syntactic patterns
for the pairs from a given text corpus. Then a sequential co-clustering is per-
formed to find clusters for entity pairs and lexical-syntactic patterns iteratively.
The clustering of the entity pairs is not necessary in our approach thanks to
the semantic annotation. Moreover, the dimensions of the input matrix and the
complexity of the clustering algorithm make the approach difficult to scale to
the Web.

2.2. Synonym resolution

The task of finding synonyms for the extracted relations is usually known as
synonym resolution. Several methods for determining the synonymy between two
relations have used the well-known distributional similarity metrics [28]. These
metrics are based on the Distributional Hypothesis that says that “Similar ob-
jects appear in similar contexts” [20]. Therefore, they calculate the synonymy
between two relations by comparing the arguments with which they occur. Sev-
eral methods have been proposed [30, 31, 52, 49, 54], which differ in the represen-
tation of the predicates, the extracted features and the function used to compute
the similarity of the feature vectors. To be effective, distributional metrics must
rely on some weighting scheme over the relation features. The most adopted one
is the pointwise mutual information (MI), which requires global counts such as
|(s, r, ∗)| and |(∗, r, o)|, which are quite expensive to compute for large data sets.

Next, we explain the measure proposed by Lin and Pantel [31] as it is rep-
resentative of the distributional similarity measures. They represent a predicate
as a binary template (relation,X, Y ), where X and Y are the arguments of
relation. For each binary template they compute two sets of features Fx and
Fy, which are the words that instantiate the arguments X and Y , respectively,
in a large corpus. Given a template t and its feature set for the X variable F t

x,
every fx ∈ F t

x is weighted by the pointwise mutual information between the

template and the feature: wt
x(fx) = log Pr(fx|t)

Pr(fx) , where the probabilities are com-

puted using maximum likelihood over the corpus. Given two templates u and v,
the similarity for the variable X is computed in the following way:

Linx(u, v) =

∑
f∈Fu

x ∩Fv
x

wu
x (f)+wv

x(f)∑
f∈Fu

x wu
x (f)

+
∑

f∈Fv
xwv

x(f)

The measure is computed analogously for the variable Y and the final distri-
butional similarity score, in their DIRT system, is the geometric average of the
scores for the two variables:

DIRT (u, v) =
√
Linx(u, v)Liny(u, v).

As previously mentioned, this measure requires global computations that are
expensive for large data sets. This and other similarity measures will be compared
to our synonymy model in the experimental section.
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Fig. 1. Components of the proposed method.

3. Method Overview

The proposed method for scalable and domain-independent relation extraction
is structured in a series of components which are independent of each other. This
offers a great flexibility as different implementations of the components can be
provided. The overall architecture of the method is illustrated in Figure 1. We
consider a text collection as input to extract semantic relations, and the avail-
ability of a domain knowledge resource. Next, we explain each of the components
of the method in detail:

1. Semantic annotation: We assume the availability of a semantic annotation
tool able to map recognized entities in the text to concepts in the knowledge
resource. In the following section we elaborate on the input and output re-
quirements of the semantic annotation phase and explain the annotation tool
used in our implementation.

2. Pattern extraction: This component is in charge of extracting candidate rela-
tions, that is, triples of the form < s1, rs, s2 > where rs is a relation string
representing the predicate of the relation and s1 and s2 are the arguments of
the predicate. In our implementation the pattern extraction is based on the se-
mantic annotations. Therefore, in the extracted candidate relations s1 and s2

are sequences of semantic annotations and rs is a relation string represented
by a simple lexico-syntactic pattern. This component is further detailed in
Section 5. Notice that the order of the first two components can be altered,
that is, the pattern extraction could be performed prior to the semantic an-
notation process as long as the provided extractor does not use the semantic
annotations as reference to extract candidate relations.

3. Synonymy model : This component implements the synonymy model used to
determine the similarity between two predicates. We implement a statistical
model that takes the candidate relations < s1, rs, s2 > and calculates the
synonymy probability of generating any two relation strings (r1, r2) based on
the semantic types (Td, Tr) associated to the entities acting as head of the
sequences of semantic annotations s1 and s2. As a result, we obtain a list of
relation string pairs (r1, r2) ordered by this probability. This phase is further
detailed in Section 6.1.

4. Clustering abstract semantic relations: This component is in charge of group-



Exploiting Semantic Annotations for Open Information Extraction: an experience in the biomedical domain7

ing the relation candidates that are similar based on the synonymy model
calculated previously. We implement an efficient clustering algorithm over the
previous relation string pairs (r1, r2) to group synonymous relation strings.
The clustering algorithm is semantics-aware as it takes into account the distri-
bution probabilities of the semantic types of the arguments of the candidate
relations. As a result, the surface relation strings are grouped into clusters
of abstract semantic relations, which are characterized by the representative
relation string and its signature type (the semantic types of the arguments).
This phase is further detailed in Section 6.2.

5. Extraction of knowledge facts: This component associates the relation in-
stances to the abstract semantic relation whose signature is compatible. Both
the abstract semantic relations and the relation instances (i.e., facts) can be
seamlessly integrated into the knowledge resource.

4. Semantic Annotation

In general terms, semantic annotation is conceived as the process of discovering
and assigning to the recognized entities in the text links to their semantic de-
scriptions, which are usually defined in a knowledge base [26, 40]. Since the main
goal of extracting relations is to provide a comprehensive knowledge base of facts
about named entities, their semantic classes and their mutual relations, we be-
lieve semantic annotation is crucial in the RE process to overcome heterogeneity
and integration issues. Ideally, a semantic annotation must be explicit, formal,
and unambiguous. These three properties enable machine understanding, and
annotating with respect to an ontology makes this possible. A typical semantic
annotation process includes three components. First, a knowledge resource or
ontology must be available. Second, a data instance recognition process discov-
ers instances of interest in target documents based on the ontology. Third, an
annotation generation process creates the annotated documents.

With the proliferation of the Web of Data and initiatives such as the Linked
Data project, which promotes a series of best practices to publish and link enti-
ties across the Web in a machine understandable way, many knowledge resources
ranging from lexicons, terminologies and thesauri to expressive ontologies, are
publicly accessible and ready to be used for annotation purposes. Some exam-
ples include dbpedia, yago, freebase and schema.org5. Specially in the biomedi-
cal domain we can find several lexical/ontological specialized resources such as
MeSH, SNOMED and UMLS among others. For the instance recognition pro-
cess, the available tools range from simple dictionary-based approaches, to more
sophisticated NLP approaches that use NER tools, POS tagging, dependency
parsing, etc. Some examples include DBpedia Spotlight6, The Wiki Machine7,
AlchemyAPI 8 and Open Calais9, for annotating general-purpose entities, and
MetaMap[3] or Whatizit [38] for annotating biomedical entities.

The following definitions formalize the notion of semantic annotation. The
examples show semantic annotations performed by our semantic annotation tool

5 http://schema.org
6 http://dbpedia.org/spotlight
7 http://thewikimachine.fbk.eu
8 http://www.alchemyapi.com/
9 http://www.opencalais.com/
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CMA [8], which uses UMLS as reference knowledge resource. Details about
UMLS and this particular semantic annotation tool, as well as other alterna-
tives are discussed in the remainder of the section.

Definition 4.1. Given a knowledge base KB, and an input set S ⊆ Σ∗ of
sequences over tokens from the alphabet Σ, a semantic annotation e is a pair
< c,W > where c ∈ concepts(KB) and W ∈ Σ∗ is a sequence w1w2...wi such
that there exists a mapping from c to a subset W ′ ⊆W (denoted by the function
msa(c)) provided by the semantic annotation tool.

Next we show a semantic annotation that maps the concept C0153876, whose
string name is “acute lymphocytic leukemia”, to the tokens acute lymphocytic
leukemia. This particular semantic annotation tool takes advantage of the clas-
sification of concepts into semantic types and semantic groups and shows this
information, that is, the knowledge resource (UMLS ), the semantic type of the
concept (T191, which corresponds to Disease and Syndrome) and the semantic
group (DISO, which corresponds to Disorder). Notice that the mapped tokens
are referenced by their position number in the sequence, allowing mappings to
non-consecutive tokens.

<e id="UMLS:C0153876:T191:DISO::1,2,3>
<w id="1">acute</w> <w id="2">lymphocytic</w>
<w id="3">leukemia</w> </e>.

This other example shows a semantic annotation where the mapped tokens
are not consecutive.

<e id="UMLS:C0003313:T116;T129:PRGE::1,3,4">
<w id="1">circulating</w> <w id="2">soluble</w>
<w id="3">immune</w>
<w id="4">complexes</w> </e>

Definition 4.2. Given a knowledge base KB, an input set S ⊆ Σ∗ of sequences
over tokens from the alphabet Σ and the set of semantic annotations E calculated
by the semantic annotation tool, an ambiguous semantic annotation e is a pair
< c,W > such that there exists another semantic annotation e′ =< c′,W ′ > ∈ E
where msa(c) = msa(c′).

A semantic annotation is ambiguous if more than one concept has been as-
signed the exact same subset of tokens. In the following example, the string
Plasmodium falciparum has been annotated with three different concepts that
belong to different semantic groups (i.e., chemicals, living beings and proteins-
genes).

<e id="UMLS:C0487378:T129:CHED::1,2|
UMLS:C0032150:T204:LIVB::1,2|
UMLS:C0369855:T116;T129:PRGE::1,2">

<w id="1">Plasmodium</w> <w id="2">falciparum</w></e>

4.1. UMLS as biomedical knowledge resource

The Unified Medical Language System (UMLS )10 is probably the most compre-
hensive knowledge resource in the biomedical domain. The version 2010AA has
more than 2.2 million concepts over 150 source vocabularies. UMLS includes

10 UMLS: http://www.nlm.nih.gov/research/umls/
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three resources: the Metathesaurus, the Semantic Network11, and the Special-
ist Lexicon. The first one consists of several thesauri (e.g., FMA, MeSH, etc.)
which contain Atoms (the distinct concepts within each source). Each Atom
is assigned to one and only one Concept, whose identifier is called CUI. The
semantic annotation tools usually work at the level of CUIs. The Semantic
Network provides a consistent categorization of all concepts represented in the
Metathesaurus and provides a set of useful relationships between these con-
cepts. It contains 133 semantic types linked by “is a” relationships. There are
also 54 kind of non-hierarchical relationships among these semantic types, e.g.,
causes(V irus,Disease). A concept of the Metathesaurus can be assigned to one
or more semantic types in the Semantic Network. The UMLS semantic groups12

is an even smaller and coarser-grained set of semantic type groupings. It contains
15 groups.

For all the previous features, UMLS is a good knowledge resource to use for
semantic annotation.

4.2. Biomedical semantic annotation tools

Most previous work in semantic annotation in the biomedical domain has been
restricted to the identification of protein and gene names [21, 55]. Recently, the
focus has shifted from individual genes and proteins to the identification of entire
biological systems, disease names, etc.

MetaMap [2, 3] was one of the first tools for mapping biomedical terms in free
text to UMLS concepts. It allows partial matching between text spans and lexical
forms by means of significant linguistic analysis followed by mapping construction
from intermediate results. One of the limitations of MetaMap is that it is very
tightly coupled with the UMLS, making the use of custom dictionaries outside
of UMLS non-trivial. Moreover, precision is usually low compared to dictionary
look-up approaches and it suffers from scalability issues.

Recently, there have been a number of tools such as Whatizit [38], Mgrep
[16] and CONANN [41] that also perform semantic annotation of concepts. Dic-
tionary look-up approaches such as Whatizit and Mgrep allow fast execution
and scalability by finding in the documents each text span that exactly matches
some lexical forms of the terminological resource. Although these approaches ex-
hibit good precision numbers, their recall is usually low. CONANN is an online
biomedical concept annotator whose philosophy of using candidate concepts and
a score based on inverse document frequency is close to the CMA tool used in
this paper.

The interest in semantic annotation of biomedical entities is such that initia-
tives such as CALBC (Collaborative Annotation of a Large Biomedical Corpus)
[15] have been set up with the goal of providing a silver standard corpus (SSC)
of annotated biomedical entities to the community. These annotations are the
result of an agreement between the participants annotations.

It must be noticed that these tools have been designed for identifying en-
tity mentions but not for extracting relations between them. As a consequence,
these tools do not care for the precise boundaries of the entities participating in
each identified relation, which are necessary to determine the semantic type of

11 UMLS SN: http://semanticnetwork.nlm.nih.gov/
12 UMLS Semantic Groups: http://semanticnetwork.nlm.nih.gov/SemGroups/
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Metamap annotations

< the isolated lung strip of the cat >CONC,ANAT,LIV B is < described for
investigating >CONC < the direct effect of drugs >CONC < on the smooth
muscle >ANAT < of the peripheral airways >CONC,DEV I <of the lung >ANAT

CALBC SSCII annotations

the isolated lung strip of the < cat >LIV B is described for investigating the direct
effect of drugs on the smooth muscle of the peripheral airways of the < lung >ANAT .

CMA annotations

the isolated < lung >ANAT strip of the < cat >LIV B is described for investigating
the direct effect of drugs on the < smooth muscle >ANAT of the peripheral <
airways >ANAT of the < lung >ANAT .

Table 1. Annotation examples of MetaMap, and the CALBC annotations and CMA. The
upper script denotes the semantic type assigned by the semantic annotation tool.

the relation arguments. For example, MetaMap maximizes the text spans that
correspond to UMLS concepts, producing chunks that do not allow a proper
identification of the relation arguments. On the other hand, more specific tools
like protein/gene annotators usually produce very small text chunks, which may
not reflect the true semantic types of the extracted relations. Table 1 shows a
sentence annotated by MetaMap, in which practically all the sentence is an-
notated, the same sentence in the CALBC SSCII annotations, where only two
isolated words have been annotated and the annotations performed by CMA.

4.3. CMA tool

Here we describe our semantic annotation tool Concept Mapping Annotation
(CMA) [8]. Compared to other annotation alternatives, this tool offers a clean
and simple approach and shows a good trade-off between performance and scal-
ability. The tool has been successfully used in other scenarios, such us in [37],
where they annotate the textual descriptions provided by catalogues of Life Sci-
ence Web Services and align them with the user requirements. It is worth men-
tioning that this tool does not disambiguate annotations and can make errors.
Indeed, the proposed method is aimed at capturing abstract relations despite
some limitations in the annotation process.

The tool is based on information retrieval (IR) models. Thus, it measures the
similarity between a given query (i.e., a text fragment) and each document of the
collection (i.e., concept descriptions) in order to give a conceptual cover for the
query. We have adopted the following information-theoretic similarity function:

sim(C, T ) = maxS∈lex(C)(ratio(S, T ))

ratio(S, T ) =
info(cw(S, T ))−missing(S, T )

info(S)

missing(S, T ) = (info(S)− info(cw(S, T )))

where info(S) measures the relevance of the words in the string S, and
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cw(S, T ) is the set of words in common between the concept description S and
the text fragment T . It is defined as follows:

info(S) = −
∑
w∈S

log(P (w|KR))

The relevance of a set of words is measured by means of the estimated prob-
ability of each word within the whole knowledge resource (KR) lexicon (i.e.,
P (w|KR)). In this way, highly frequent words in the KR contribute little to the
final score of the strings containing them. The final score sim(C, T ) is normalized
(i.e., it ranges between 0 and 1). Notice that not all the words of the string S
must appear in the text T , but just those that better discriminate the intended
concepts. It is worth mentioning that this score does not require any parameter
except an estimation of P (w|KR) for each word w in the KR lexicon.

In our experiments, text fragments T are selected according to the relations
to be extracted. More specifically, we have tested two different configurations: an
ad-hoc chunker for identifying noun phrases around relations by using a POS-
tagger, and the triples provided by the ReVerb13 tool.

5. Pattern extraction

Biomedical literature is characterized by making use of sentences with com-
plex structure and specialized vocabulary. This represents a challenge for the
IE community. The use of long sentences with relative and conjunctive clauses
complicates the matter and requires deep linguistic analysis of each sentence.
The discovery of implicit relations in complex and long sentences is out of the
scope of this paper, as it is a time consuming task usually addressed by machine
learning approaches. In this paper, we focus on the discovery of explicit binary
relations of the form < subject, predicate, object >. For that, we propose a set
of lexico-syntactic patterns. We are aware of the variety of syntactical patterns
used to express relations in the biomedical domain. These range from simple
< subject, predicate, object > patterns where the predicate is a verbal form
(e.g., < influenza, induces, asthma >) to verb nominalizations and complex
alternations both of verbs and nouns [13]. Table 2 shows some examples of the
latter. The proposed patterns are not exhaustive and thus, do not capture all the
previous linguistic and syntactical variations. We believe such patterns require
different linguistic and deeper analysis from the one proposed in this paper. In
any case, frequent verb nominalizations such as binding, association, interaction,
inhibition, phospholiration, etc. happen to be annotated by our tool under the
UMLS semantic groups PHEN (Phenomena) and PHYS (Physiology). There-
fore, their identification for further extraction and analysis would be possible.
We leave the treatment of such kind of patterns for future work.

The following section introduces the set of lexico-syntactic patterns proposed
for the extraction of candidate relations. However, the loose coupling of each of
the components of the method allows to use any other pattern extractor that
adheres to the < subject, predicate, object > format.

13 ReVerb: http://reverb.cs.washington.edu/
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Verb nominalizations semantically annotated

< phosphorylationPHY S > of < RbPRGE > by the < cyclinPRGE > < D1/cdk4PRGE >

< Cdc2PRGE > < phosphorylationPHY S > of < nucleolinPRGE >

< 125I − IGF − ICHED > < bindingPHY S >

< DNA− bindingCHED > < assayPROC >

< PP2APRGE > < associationPHEN > with < ShcPRGE >

< HerpesvirusLIV B > < type2MISC > < associationPHEN > with <
carcinomaDISO >

< T − cellPRGE > < interactionsPHY S >

< GmPRGE > < interactionPHY S > in < SLEDISO >

< PGN − inducedPRGE > < inhibitionPHY S > of <
vaccinia virus replicationPHY S >

Table 2. Examples of verb nominalizations. The upper script denotes the semantic type as-
signed by the semantic annotation tool.

5.1. Simple lexico-syntactic patterns

Although the biomedical literature uses especially complex structures, recent
studies have shown that a high percentage of binary relationships are expressed
in English sentences by a set of few lexico-syntactic patterns that can be detected
with a shallow analysis (POS-tagging) [6]. We take advantage of this fact in order
to gather from the annotated corpus a subset of candidate binary relationship
instances (i.e., candidate relations) by using the set of lexico-syntactic patterns
(LSP) shown in Table 5.1. Our key insight is that semantic annotations in a
sentence almost always correspond to the arguments of the relations. Therefore,
the lexico-syntactic patterns are looked for in between two semantic annotations.
However, depending on the leniency of the semantic annotation tool used, the
semantic annotations may be too restrictive to capture the complete meaning
of the entity. To cope with this issue, we extend the definition of semantic an-
notation in order to completely capture the meaning of the arguments of the
relations.

Definition 5.1. Given the set of semantic annotations E calculated by the se-
mantic annotation tool, and the set P of English prepositions, we define a se-
quence of semantic annotations as a sequence e1e2...en where ei ∈ E ∪ P .

A sequence of semantic annotations is a subset of annotations appearing
in consecutive order or separated by prepositions. In the following sentence,
“The effect of [cyclosporin A] on [dental caries] in [rats] monoassociated with
[Actinomyces viscosus]”, where annotated entities appear between brackets, we
identify s1 =cyclosporin A on dental caries in rats and s2 =Actinomyces viscosus
as sequences of semantic annotations.

Finally, we define the candidate relations, which are the relation instances
from which the groups of semantic relations and their type constraints are
learned.

Definition 5.2. A candidate relation f ∈ Σ∗ is a triple < s1, rs, s2 > such that
s1 and s2 are sequences of semantic annotations and rs (the relation string) is
an instance of a lexico-syntactic pattern.
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Pattern Examples

[E] verb [E]
[levamisole] activates [macrophages]

[secretory phospholipase A2] induces [dendritic cell maturation]

[E] verb phrase [E] [PAF] consistently inhibited [Killer cell]

[E] verb phrase + prep [E]

[polysacharide] was treated with [periodate]

[Normal spleen cells] treated with [poly I:C]

[neutrophilia] were induced by [LPS]

[ATF-2] was inhibited by [HDAC3]

[IFNs] are principally mediated by [GAF]

[E] prep + noun + prep [E] [cytostatic drugs] in combination with [OK-432]

[E] to + infinitive [E] [fibroblasts] to produce [growth factor(s)]

[E] neg-verb-phrase [E] [haptens] does not inactivate [B lymphocytes]

[E] to be [E] [Strongyloidiasis] is an [intestinal disease]

Table 3. Lexico-syntactic patterns (LSP) proposed

In the previous example, the candidate relation f =< s1, rs, s2 > is composed
by s1 =cyclosporin A on dental caries in rats, the relation string rs=monoassociated
with and s2 =Actinomyces viscosus. We emphasize the importance of detecting
sequences of semantic annotations as possible arguments for the relations. With-
out this, the candidate relation of the previous example would read s1 =rats,
rs=monoassociated with, s2 =Actinomyces viscosus, which does not reflect the
exact meaning of the sentence. The semantic annotations acting as heads of s1

and s2 play a crucial role in identifying the semantic types of the discovered
abstract semantic relations. Therefore, we use the function head(seq) : S → E
to return the annotation acting as head of a sequence of annotations. Following
the example, head(s1) =cyclosporin A and head(s2) =Actinomyces viscosus.

A candidate relation f =< s1, rs, s2 > is well-typed if head(s1) and head(s2)
are unambiguous annotations. We will only deal with well-typed relations as they
have a unique semantic type associated to its subject and object.

6. Discovering Abstract Semantic Relations

The main goal of this paper is to find semantic groups of relation strings (i.e.,
abstract semantic relations) which represent relations between entity types. In
other words, given the set of extracted candidate relations < s1, rs, s2 > from the
previous phase, we want to find groups of relation strings rs that may be used
in the same contexts with a similar purpose. Moreover, we want to characterize
the groups with a signature type. The following definition formalizes the notion
of abstract semantic relation.

Definition 6.1. An abstract semantic relation is a tuple (< Td, R, Tr >,Syn)
such that < Td, R, Tr > is the signature, where Td and Tr are semantic types
for the domain and range of the relation, R is the representative name of the
relation, and Syn = {rs} is the set of synonymous relation strings.

The different abstract semantic relations are discovered by clustering the
candidate relations according to their joint synonymy probability, which depends
on the usage of the relation strings in different contexts (i.e., with different entity
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types). The following sections explain the statistical model used to measure the
synonymy and the clustering algorithm.

6.1. Statistical model for synonymy

We say that two relation strings r1 and r2 are synonyms, denoted r1 ∼ r2 if
we can replace one string by the other without changing the meaning of the
relation. As a same relation string can be applied over different domain and
range types, synonymy should be defined in terms of the semantic types. That
is, we must specify the semantic types (Td, Tr) for the domain and range respec-
tively, under which the synonymy property holds. For example, to treat with ∼
to inject with holds for the semantic types (Human,Drug), but not in other
contexts. We use the function types((r1, r2)) to refer to the semantic types.

Our approach to find synonymous relations consists in applying a statistical
translation method, inspired by the information retrieval translation models of
[27]. Basically, we want to estimate the joint probability of generating two rela-
tion strings for any pair of semantic types (Td, Tr). The joint probability can be
estimated as follows:

p(r1 ∼ r2|(Td, Tr)) ∝
∑

(e1,e2)∈(Td,Tr)

p(r1|(e1, e2)) · p(r2|(e1, e2)) · p((e1, e2))

This is achieved by first estimating the language model of each relation string
rs, p(rs|(e1, e2)), where (e1, e2) is any pair of annotated entities in the corpus that
has semantic types (Td, Tr). These language models are just estimated through
the relative frequency of observing each relation string with respect to each pair
of annotated entities. From the candidate relations < s1, rs, s2 > we calculate
the probabilities p(rs|(e1, e2)) and p((e1, e2)) such that e1 = head(s1) and e2 =
head(s2).

Notice that each pair (e1, e2) is an evidence of synonymy between the com-
pared relation strings. Therefore, the number of pairs that should support the
probability estimation must be statistically significant. For this purpose, in the
experiments we establish a threshold for the synonymy probability based on the
minimum number of entity pairs that is statistically significant.

Independently from the previous joint probability, if two relation strings,
r1 and r2, have the same signature (Td, Tr) and their heads share the same
stem, they are considered synonymous and thus, a high probability is assigned.
For example, the relation strings localized in and colocalized in are considered
synonyms under the signature (Protein, Protein) as they share the stem localiz∗
.

Due to errors in the annotations as well as in the pattern extraction pro-
cess, it is possible to find some false associations between relation strings. One
way to check if two relation strings are being used properly under the given
context is to compare their distributions across all the pairs of semantic types
(Td, Tr), denoted as p(rs|(Td, Tr)). These distributions can be compared with the
Kullback-Leibler divergence, as follows:

DKL(r1, r2) =
∑

∀(Td,Tr)

p(r1|(Td, Tr)) · log p(r1|(Td, Tr))

p(r2|(Td, Tr))

Similarly to the previous models, probabilities p(r1|(Td, Tr)) are estimated by
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calculating the relative frequency of the relation string across the pairs (Td, Tr).
In this case, these probabilities must be smoothed to avoid zero probabilities.
Notice that pairs of relation strings that present a great divergence are likely
to be wrong, and therefore, they are unlikely to be synonymous. As such, the
divergence threshold is used to filter noise produced by both wrong annotations
and extraction errors. As shown in the experiments, the more errors an annotated
collection contains the more sensitive is the clustering algorithm to the divergence
threshold. Thus, users can set this parameter depending on the quality of both
the extracts and the intended results.

6.2. Clusters denoting abstract semantic relations

The abstract semantic relations as defined previously are characterized by a
signature type < Td, R, Tr > and a set of tightly related relation strings Syn.
In order to create the different clusters of abstract semantic relations we cluster
the list of ordered relation string pairs (r1, r2) in descending order of synonymy
probability as previously calculated, that is, p(r1 ∼ r2|(Td, Tr)).

Definition 6.2. A pair of relation strings (r1, r2) belongs to the abstract se-
mantic relation C = (< Td, R, Tr >,Syn), i.e., r1 ∈ Syn and r2 ∈ Syn, iff
types((r1, r2)) = (Td, Tr) and rep(C) ∩ (r1, r2) 6= ∅.

In the previous definition, rep(C) is the representative relation string pair
of the cluster, which happens to be the pair with greater synonymy probabil-
ity. In order to generate the clusters of abstract semantic relations, we propose
the greedy Algorithm 1. The algorithm requires a list of ordered relation string
pairs (r1, r2). First, the algorithm filters out the pairs of relation strings with
divergence greater than a threshold θ because these pairs are likely to be wrong
synonymous strings. Then, the filtered list of relation string pairs is partitioned
according to the semantic types such that each partition in Parttypes holds rela-
tion string pairs with the same signature. Each of these partitions will generate
a set of clusters stored in Ctypes. Since the relation string pairs keep the order in
each partition, the stronger synonymous pairs are processed first. For each pair,
the algorithm either generates a new cluster and sets that pair as representative
or the pair is appended to an existing cluster if it has a common relation string
with the representative of such cluster. Notice that the intersection operator is
not strict, as we use a lexical similarity measure to compare two relation strings.
Each partition generates a set of clusters Ctypes sharing the same semantic types
(Td, Tr) that is appended to Clusters.

6.3. Analysis cost

In order to calculate the probabilities p(r1 ∼ r2|(Td, Tr)), each candidate re-
lation < s1, rs, s2 > is processed and for each entity pair (e1, e2) such that
e1 = head(s1) and e2 = head(s2) we keep the different relation strings in a list.
Then, the relation strings of each list are taken by pairs (r1, r2) and the proba-
bilities p(r1|(e1, e2)), p(r2|(e1, e2)) and p((e1, e2)) are computed using maximum
likelihood over the corpus as follows: let N be the number of entity pairs (e1, e2)
that occur with more than one relation string rs. The probability p((e1, e2)) can
be estimated as 1

N . Let n1 be the cardinality of a specific relation string rs co-
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occuring with (e1, e2) and n2 be the total number of relation strings co-occuring
with (e1, e2). The probability p(rs|(e1, e2)) can be estimated as n1

n2
. Therefore,

the cost of estimating the probabilities is O(N).
The cost of ordering the relation string pairs (r1, r2) is O(MlogM) being M

the number of relation string pairs.
Finally, the clustering algorithm is in the worst case linear with respect to

the number of relation string pairs.
In contrast to distributional metrics, our approach does not require to build

feature vectors nor global computations like mutual information. Indeed the
computation of the proposed synonymy metric can be massively parallelized for
dealing with very large data sets.

Algorithm 1 Generation of abstract relations

Require: LR: list of relation string pairs ordered by synonymy probability, θ:
threshold for the relation divergence

Ensure: Clusters: a clustering of relation strings
Clusters = ∅
LR′ = {(ri1, ri2) ∈ LR | DKL((ri1, ri2)) < θ, 0 < i ≤ |LR|}
Parttypes = {P1, ..., Pm} such that ∀(ri1, ri2), (rj1, rj2) ∈
Pk types((ri1, ri2)) = types((rj1, rj2)), 0 < i, j ≤ |Pk|, 0 < k ≤ m
for all Pi ∈ Parttypes do
Ctypes = ∅
for all (ri1, ri2) ∈ Pi do

if ∃Ci ∈ Ctypes such that (ri1, ri2) ∩ rep(Ci) 6= ∅ then
append (ri1, ri2) to Ci

else
create new cluster C = {(ri1, ri2)}
rep(C) = (ri1, ri2)
Ctypes = Ctypes ∪ C

end if
end for
Clusters = Clusters ∪ Ctypes

end for
return Clusters

7. Experiments

We have performed several experiments to test our general method for relation
extraction and synonymy resolution based on semantic annotation. The first
experiment evaluates the quality of the clusters of synonymous relations obtained
by our method by trying with different configurations of semantic annotation and
pattern extraction. In this experiment we also analyze the sensitivity of each
configuration to the divergence threshold. The second experiment compares the
quality of the clusters using different known distributional similarity measures.
We also found interesting to compare the extracted semantic relations to those in
the UMLS SN, as it is a reference knowledge resource in the biomedical domain.
Finally, we show some examples of the extracted clusters of semantic relations
and the facts (i.e., relation instances) classified.
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7.1. Setup

The selected application scenario for evaluating the method is the biomedical
domain, as there are huge amounts of unstructured text containing implicit
knowledge available and also several knowledge resources describing biomedi-
cal entities. In fact, this research was partly motivated by the CALBC initiative,
which addresses the automatic generation of a very large, shared text corpus
annotated with biomedical entities. For that, they set up two challenges. In the
second, they provided the participants with two corpora of Medline immunology-
related abstracts to be annotated. The small corpus contains about 175 thousand
abstracts and the big one contains about 714 thousand. The goal is to provide a
silver standard corpus useful for text-mining tasks. We believe that such amount
of semantically annotated documents constitutes an invaluable source of knowl-
edge and a great opportunity to advance the automatic extraction of biomedical
relations. Therefore, the experiments about open relation extraction were car-
ried out on the set of 714 thousand documents, which we refer with the name of
CALBC corpus. As the component-based structure of our method allows flexibil-
ity, we provide different configurations for each of the components (i.e., semantic
annotation, pattern extraction and synonymy model) for the input set of docu-
ments of the CALBC corpus. Next, we explain each of the configurations:

– CALBC SSCII + LSP (C1): This configuration is the result of using the
annotated silver standard corpus of the second challenge of the CALBC ini-
tiative for the semantic annotation component and our LSP patterns for the
pattern extraction phase. The semantic annotation process is the result of the
harmonization of the semantic annotations of the participants on a 4-votes
based agreement.

– CMA + LSP (C2): This configuration is the result of using the semantic
annotation tool CMA and the LSP in the pattern extraction phase to the
CALBC corpus.

– ReVerb + CMA (C3): This configuration is the result of applying the CMA
annotation tool to the triples extracted by ReVerb, which consists of text
chunks with the implicit subject-predicate-object structure. ReVerb is a triple
extractor that identifies relation strings that satisfy some syntactic and lexical
constraints mainly based on POS tags, and then finds a pair of noun phrase
arguments for each identified relation string. Further details can be found in
[18]. In this configuration, we switch the order of the semantic annotation
and the pattern extraction phases because the smart chunking performed by
ReVerb can ease the annotation process.

Table 4 summarizes the main features of the three configurations used. The
first two columns show the semantic annotation tool and the patterns used. For
C1, the semantic annotation tool refers to the already annotated CALBC cor-
pus that is the result of the harmonization process between the annotations of
different systems. The third column shows the number of obtained semantic an-
notations. The fourth and fifth columns show the number of candidate relations
of the form < s, r, o > and the number of filtered relations. The set of filtered
relations is obtained by discarding candidate relations that are ambiguous (i.e.,
relations whose subject or object annotations are ambiguous) and also discard-
ing vague relations (i.e., candidate relations whose subject, object or predicate
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Sem. Ann. Patterns # Ann. # Cand. rels. # Filtered Cov. (%)

C1 CALBCSSCII LSP 10,304,172 173,044 29,803 17.22

C2 CMA LSP 21,929,106 977,717 262,785 26.87

C3 CMA ReVerb 21,772,578 4,607,027 633,446 13.74

Table 4. Several configurations for the semantic annotation and pattern extraction components
over the the CALBC corpus input dataset.

strings have low inverse document frequency14). Finally, the last column indi-
cates the percentage of filtered relations w.r.t. the initially extracted candidate
relations.

MetaMap was one of the participants in the CALBC competition, but only
performed the annotation over the small collection, which contains around 175
thousand abstracts. Due to its high recall, MetaMap annotated almost all the
text, and consequently it was not possible to extract a significant number of
triples (around 4000 triples) to evaluate it.

We have manually set up a gold standard (GS) to account for synonym groups
of relation signatures that can be derived from the UMLS Semantic Network and
are present in the evaluated collection. We mainly follow the evaluation method-
ology proposed in [54], but also regarding the semantic types of the relations.
More specifically, for each pair of semantic types expressed in the UMLS Seman-
tic Network, we have selected relation strings that are included in other gold
standards (e.g., protein-protein, drug-drug, protein-disease interactions) along
with those that appear frequently in our dataset under the corresponding signa-
ture. Afterwards, we have manually clustered synonymous strings into 249 groups
15. As in [54], we use precision (P), recall (R ) and F-score (F1) to measure the
overlap between the best matches between the system-generated clusters and
the GS groups. These matches only consider non-singleton clusters that have at
least one relation string appearing in the GS. Finally, macro-averaging is used for
calculating the global scores of these measures. In the evaluation we also use the
coverage (Cov) of the candidate relations, which is the percentage of candidate
relations covered by the system-generated clusters (non-singletons). Usually, the
greater the coverage the more difficult it is to find synonym clusters. The GS has
a coverage of 32% with 249 non-singleton clusters.

7.2. Evaluation of the clusters of semantic relations

The clusters of abstract semantic relations group relation strings that are syn-
onymous under the same context (i.e., argument types). Our first experiment
evaluates the obtained clusters for the different configurations proposed for the
CALBC corpus. We set the synonymy probability threshold of a pair of relation
strings to 1−5. The divergence threshold θ between pairs of relation strings is
used to filter noise produced by both wrong annotations and extract errors. Ta-
ble 5 shows the evaluation for the three configurations with different settings of
the divergence threshold.

14 We have estimated it with the Wikipedia 2007 snapshot.
15 http://krono.act.uji.es/Links/datasets/GSsynonyms.txt
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Configuration Metrics Div. threshold θ

0.0001 0.001 0.01 0.1 1

C1

P 0.99 0.98 0.80 0.56 0.53

R 0.72 0.72 0.67 0.68 0.70

F1 0.79 0.79 0.65 0.49 0.48

Clusters 264 267 429 778 829

Avg. cluster size 3.73 3.75 4.05 5.37 5.88

Coverage (%) 27.02 27.52 38.95 62.13 65.42

C2

P 0.98 0.98 0.96 0.93 0.93

R 0.57 0.57 0.58 0.58 0.58

F1 0.64 0.64 0.64 0.63 0.63

Clusters 3250 3251 3314 3350 3352

Avg. cluster size 7.35 7.28 7.15 8.04 8.43

Coverage (%) 34.69 34.70 37.37 39.10 39.29

C3

P 1.00 1.00 0.97 0.95 0.95

R 0.55 0.55 0.56 0.57 0.57

F1 0.64 0.65 0.64 0.63 0.63

Clusters 4432 4440 4522 4564 4564

Avg. cluster size 4.63 4.64 4.68 4.72 4.72

Coverage (%) 32.19 32.52 34.70 36.22 36.25

Table 5. Evaluation of the clusterings obtained with different configurations of the initial data
set and different settings of the divergence threshold θ.

The effect of the divergence threshold over the three configurations is inter-
esting. The general tendency is that as the divergence increases, the clustering
algorithm is less restrictive, allowing groups of relation strings that might not
be synonymous because of its high divergence. The algorithm tends to extract
more relations covered by more clusters, as both the number of clusters and the
average cluster size increase. This favors both recall and coverage but affects the
precision of the synonymous relation strings captured by the clusters. Although
the three configurations follow the previous tendency, we observe that C1 is no-
ticeably more sensitive to the divergence. In fact, the best F1 score is 0.79 and is
given by C1 with θ < 0.001. However, both precision and recall drop for higher
scores of θ. In contrast, C2 and C3 are quite stable and keep high precision
values with a decent recall even for large divergence thresholds. The reason for
this behavior could lay in the quality of the semantic annotations, and more
exactly in the boundaries of the annotations. C1 gives the best clustering when
considering only relations with very low divergence (i.e., relations which have a
well-defined signature). However, when augmenting θ, many relation pairs that
have large divergence are sneaking in and becoming part of the clusters. The
fact that in C1 there are many relation pairs with large divergence can only be
due to two reasons: either the relations are very general or there are errors in
the annotation process. As general relations are discarded by the tf-idf filter, we
believe the sensitivity of C1 to the divergence is due to errors in the annotations.
As the annotation of C1 is the result of the harmonization of four systems, if the
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boundaries of the annotation are not well detected, the annotation will have an
erroneous semantic type assigned, which has a direct impact on the divergence of
the relations w.r.t. the signatures. An overview of the generated clusters revealed
this fact. The difference in the number and size of the clusters and coverage of
C1 w.r.t. C2 and C3 is also noticeable, getting the latter more stable clusters for
different thresholds.

7.3. Comparison of distributional similarity metrics

The similarity measure applied in our method can be categorized into the group
of distributional similarity metrics as it calculates the similarity of two relation
strings based on the arguments with which they occur. The innovative aspect is
the use of semantic annotation to calculate the similarity based on entities (and
not on strings) and with respect to the semantic types associated to the entities,
which constitute the signature of a relation. In this experiment, we take as input
the second configuration of the CALBC corpus (C2) (i.e., corpus annotated with
CMA tool and LSP as pattern extractor) and compare the clustering output
using four different similarity measures: Lin, DIRT, Cover and BInc. Table 6
shows the results.

The metrics are calculated for different thresholds of the similarity measures.
For low similarity thresholds all the measures have a similar behavior, that is,
even though the recall and coverage are quite high, the precision of the clusters
is very low. If we increase the similarity threshold to gain precision, the coverage
drops dramatically, except for Cover, which maintains an acceptable coverage but
the recall is still low. By comparing the metrics obtained with these similarity
measures with the ones proposed in this paper (C2 of Table 5), we observe that
the F1 score is much higher in our method. This corroborates the benefits of
using semantic annotation in distributional similarity measures.

7.4. Comparison with UMLS Semantic Network

The UMLS Semantic Network provides a broad categorization of the semantic
types and also a handful set of relationships between them. In this experiment,
we take the Semantic Network as reference an manually compare a subset of
the discovered abstract semantic relations with those defined in the Semantic
Network. We selected a random sample of 222 clusters produced with the config-
uration C2 and satisfying the property of having more than 50 classified relation
instances. For each cluster, an expert assessed the correctness of the abstract
semantic relation by comparing it with the relations of the Semantic Network.
For the overlapping relations (i.e., relations having the same signature types),
which amount to 177 (80%), the expert manually assessed the precision, which
is 96%. We also detected that 67% of the overlapping relations discovered by our
method are more specific than the relations in the Semantic Network. For exam-
ple, for the relation produces between Cell and Amino Acid Peptide or Protein
we were able to find more specific relations such as stimulated, cultured, secretes,
activated, coated or expresses. The rest of the relations discovered by our method,
which are 45 (20%), are not covered by the Semantic Network. The accuracy of
these relations was manually assessed by an expert and is 82%. Some examples
include exposed(Mammal, Hazardous or Poisonous Substance) or detected(Virus,
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Sim. measure Metrics Threshold for the similarity measure

0.1 0.2 0.3 0.4 0.5

Lin

P 0.25 0.41 0.53 0.45 -

R 0.71 0.62 0.58 0.86 -

F1 0.30 0.40 0.45 0.55 -

Clusters 919 471 112 17 -

Avg. cluster size 11.32 5.21 4.06 3.65 -

Coverage (%) 60.11 35.93 10.86 0.91 -

DIRT

P 0.24 0.30 0.33 0.53 0.79

R 0.82 0.73 0.69 0.60 0.40

F1 0.30 0.34 0.36 0.48 0.41

Clusters 1179 782 276 42 8

Avg. cluster size 36.51 18.97 10.23 4.76 3.75

Coverage (%) 73.76 59.46 32.53 5.65 0.85

Cover

P 0.19 0.26 0.34 0.38 0.44

R 0.80 0.73 0.69 0.65 0.64

F1 0.27 0.32 0.37 0.40 0.44

Clusters 995 834 484 332 155

Avg. cluster size 20.28 11.91 8.48 6.80 5.89

Coverage (%) 64.81 62.41 49.70 40.61 26.79

BInc

P 0.22 0.36 0.46 0.55 0.44

R 0.76 0.65 0.59 0.57 0.78

F1 0.28 0.38 0.42 0.47 0.56

Clusters 990 646 248 71 12

Avg. cluster size 15.40 7.22 5.05 3.61 3.17

Coverage (%) 64.29 51.40 27.03 7.21 0.57

Table 6. Evaluation of the clustering method using different similarity measures.

Body Substance). The incorrect relations are mainly due to annotation errors.
For example, the relation eluted(Amino Acid Peptide or Protein, F inding) is
judged as incorrect. By taking a closer look at the facts classified under this re-
lation we discover facts such as < antibodies, eluted from, glomeruli >, where
antibodies has been correctly annotated but glomeruli has been assigned the
semantic type Finding.

7.5. Examples of clusters, synonyms and facts

In this section we show some interesting examples of both clusters, synonymous
relations and facts that have been discovered by our method. Table 7 shows ex-
amples of synonymous relation strings associated to the corresponding semantic
relation. Notice that only the head of the synonymous relation pattern is shown.
Table 8 shows examples of relation instances extracted by the method for each
of the clusters in Table 7.
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# Semantic Relation Synonymous strings

1 cultured(Cell,Amino Acid) cultivated,incubated,cultured

2 implicated(Amino Acid,Pathologic Function) implied,contribute,implicated

3
infiltrating(Cell,Body Part)

entering,invading

infiltrated,infiltrate,infiltrating

4
reconstituted(Mammal,Cell)

engrafted,grafted,repopulated

transplanted,infused,reconstituted

5 analyzed(Body Substance,Laboratory Procedure) analyzed,assayed,analysed

6 vaccinated(Mammal,Virus) vaccinated,challenged,inoculated

7 develop(Mammal,Disease or Syndrome) develop,developing,susceptible

Table 7. Examples of clusters of synonymous relation strings.

# Knowledge Facts

1 < mouse [fibroblasts], were incubated with, [lymphokine] >

2
< [proteases], may contribute to the,

pathogenesis of [chronic onchocercal dermatitis] >

3 < [lymphocytes], infiltrating the, [thyroid gland] >

4 < [SCID mice], were engrafted with, [peripheral blood lymphocytes] >

5
<[bone marrow samples] from patients with multiple myeloma,

were analyzed by, [flow cytometry] >

6 < [monkeys], were vaccinated with, live-attenuated [SHIV] >

7 < [pigs], were highly susceptible to, [Salmonella infections] >

Table 8. Examples of extracted relation instances. Notice the head of the subject and object
is in between brackets.

To further emphasize the variety and usefulness of semantic relations that the
system is able to extract, we simply run a query to extract the relation instances
talking about asthma. We obtain nearly 400 relation instances characterizing
this disease, from which we show an excerpt in Table 9. The meaning for the
semantic type codes is shown in Table 10.

8. Conclusions and Future Work

This paper addresses open IE in the biomedical domain from a semantic view-
point in an unsupervised manner. We claim semantic annotation of scientific
literature is the key to discover and extract groups of semantic relations so that
they can augment the already available knowledge resources, as the attached se-
mantics allows machine readability, inferencing and reusability of the extracted
knowledge. The proposed synonymy model and clustering algorithm also bene-
fit from the semantics of the annotations to group synonymous relation strings
denoting new abstract relations with the appropriate signature types. The empir-
ical evaluation shows that our method is efficient and can perform well on large
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Knowledge Facts Abstract Relation

asthma induced by isocyanates induced(T047,T109)

asthma induced by Candida antigen induced(T047,T121)

asthma induced by influenza induced(T047,T047)

asthma induced by ovalbumin induced(T047,T116)

asthma complicated by fungal infections complicated(T047,T047)

asthma complicated by asthma complicated(T047,T047)

asthma is characterized by infiltration of inflammatory cells characterized(T047,T046)

asthma is characterized by eosinophilia characterized(T047,T047)

asthma characterized by airway hyperreactivity characterized(T047,T047)

asthma are characterized by chronic inflammation characterized(T047,T046)

organic dust-induced [asthma] characterized by airway neutrophilia characterized(T047,T033)

asthma accompanied by rhinitis accompanied(T047,T047)

cytokines implicated in asthma implicated(T116,T047)

outdoor allergens is strongly associated with asthma strongly-positive(T129,T047)

dog allergens was strongly associated with asthma strongly-positive(T129,T047)

parasite infection might prevent asthma prevent(T047,T047)

allergen specific immunotherapy to treat asthma prevent(T061,T047)

exercise-induced asthma treated with anti-leukotrienes treated(T047,T109)

type I asthma mediated by IgE mediated(T047,T116)

Table 9. An excerpt of the extracted relation instances characterizing asthma disease. Notice
we use the semantic type codes of UMLS to specify the relation arguments for space restrictions.

Sem. type code Textual label

T109 Organic Chemical

T116 Amino Acid Peptide or Protein

T121 Pharmacologic Substance

T129 Immunologic Factor

T033 Finding

T046 Pathologic Function

T047 Disease or Syndrome

T061 Therapeutic or Preventive Procedure

Table 10. Semantic type’s textual label.

scale data. Moreover, the method is capable of extracting high quality semantic
relations and groups of synonyms from unstructured text.

This research opens broad ways for future improvements and extensions.
About the lessons learned from the experiments we emphasize the impact of the
semantic types assigned to the annotated entities. In order for the method to
perform well, we require minimum quality guarantees in the semantic annotation
process. One future research line is the development of semantic annotation
methods oriented to the task of relation extraction. We would also like to further
investigate new techniques to capture non-frequent relations and couple them
with our method in an attempt to improve recall while keeping the good precision
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rates achieved. On the other hand, we are also studying how to use the extracted
abstract relations for disambiguation purposes. That is, to apply some kind of
bootstrapping to ambiguous annotations and extract more relations. Finally, it
would be interesting to consider the learning of rules over the discovered relation
predicates in order to uncover implicit relations [7, 44].
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